Skip navigation

Super-flies and parasites

4 Posts tagged with the bilharzia tag
0

On 25 June the Museum will open its doors to a special event in celebration of the international and global commitment between countries, industry, charities and academia to work together against Neglected Tropical Diseases (NTDs). This commitment was first agreed upon in London in 2012 and has since been termed the London Declaration On NTDs.

 

By joining forces to fight NTDs the world would achieve a huge reduction in health inequality paving the way to sustainable improvements in health and development especially amongst the worlds poor. The 25 June sees the launch of the third progress report, 'Country Leadership and Collaboration on Neglected Tropical Diseases'. A pragmatic overview of what has been done, what has worked, what hasn't and what key areas still need to be achieved.

 

The Museum is thrilled to be participating in this event, having a long-standing history in parasitic and neglected tropical disease research. As both a museum and an institute of research our mission is to answer questions of broad significance to science and society using our unique expertise and collections and to share and communicate our findings to inspire and inform the public. We are excited to be hosting a day of free public events on Neglected Tropical Diseases.

 

What are NTDs?

Neglected Tropical Diseases are termed in this way because they infect hundreds of thousands to millions of people, predominantly the world's poorest and most vulnerable communities, and yet receive comparatively little funding for basic, clinical or drug-development research and even less attention from governments, people and the media of affluent countries. Until now!

 

In total the WHO has identified 17 diseases or groups of diseases that fall within this category.

 

NTD slides from Bonnie Webster.jpg

World Health Organization has identified 17 Neglected Tropical Diseases. 10 of these have been targeted for control and elimination by 2020

 

The 10 selected by the WHO for control and elimination by 2020 are:

 

  1. Onchocerciasis (aka river blindness): A blood worm infection transmitted by the bite of infected blackflies causing severe itching and eye lesions as the adult worm produces larvae and leading to visual impairment and permanent blindness.
  2. Dracunculiasis (aka Guinea-worm disease): A roundworm infection transmitted exclusively by drinking-water contaminated with parasite-infected water fleas. The infection leads to meter-long female worms emerging from painful blisters on feet and legs to deposit her young. This leads to fever, nausea and vomiting as well as debilitating secondary bacterial infections in the blisters.
  3. Lymphatic filariasis: A blood & lymph worm infection transmitted by mosquitoes causing abnormal enlargement of limbs and genitals (elephantiasis) from adult worms inhabiting and reproducing in the lymphatic system.
  4. Blinding trachoma: A chlamydial infection transmitted through direct contact with infectious eye or nasal discharge, or through indirect contact (e.g. via flies) with unsafe living conditions and hygiene practices, which if left untreated causes irreversible corneal opacities and blindness. Trachoma is the leading cause of blindness in the word.
  5. Schistosomiasis (aka bilharzia): A blood fluke infection transmitted when larval forms released by freshwater snails penetrate human skin during contact with infested water. The infection leads to anaemia, chronic fatigue and painful urination/defaecation during childhood, later developing into severe organ problems such as liver and spleen damages, bladder cancer, genital lesions and infertility.
  6. Visceral leishmaniasis (aka Kala azar): A protozoan blood parasite transmitted through the bites of infected female sandflies which attacks internal organs which can be fatal within 2 years. 
  7. Soil-transmitted helminths: A group on intestinal worm infections transmitted through soil contaminated by human faeces causing anaemia, vitamin A deficiency, stunted growth, malnutrition, intestinal obstruction and impaired development.
  8. Leprosy: A complex disease caused by infection mainly of the skin, peripheral nerves, mucosa of the upper respiratory tract and eyes.
  9. Chagas disease: A life-threatening illness caused by a blood protozoan parasite, transmitted to humans through contact with vector insects (triatomine bugs), ingestion of contaminated food, infected blood transfusions, congenital transmission, organ transplantation or laboratory accidents.
  10. Human African trypanosomiasis (aka sleeping sickness): A protozoan blood parasitic infection spread by the bites of tsetse flies that is almost 100% fatal without prompt diagnosis and treatment to prevent the parasites invading the central nervous system.

 

They were selected because the tools to achieve control are already available to us and, for some, elimination should be achievable.

 

Take the Guinea Worm:

 

Guinea worm Peter Mayer.jpgGW (SKnopp).jpg

Guinea worm infection - from over 3.5 million people infected in the 80s to less than 130 cases in 2014. Set to be second human disease to be eradicated after smallpox (photo credits David Hamm&Peter Mayer)

 

In the 1980s over 3.5 million people were infected with Dracunculiasis (i.e. Guinea worm disease), with 21 countries being endemic for the disease. Now, thanks to the global health community efforts and extraordinary support from the Carter Center, only 126 cases were reported in 2014 and only 4 endemic countries remain: Chad, Ethiopia, Mali and South Sudan! If the WHO goal of global eradication of Guinea Worm by 2020 is met then Dracunculiasis is set to become the second human disease in history to be eradicated (the first, and only one, being smallpox). Not bad for an NTD! But there are still challenges!

 

At the Museum we have a long history of working on health related topics. Indeed our founding father Sir Hans Sloane was a physician who collected and identified plants from all over the world for the purpose of finding health benefits - in fact he developed chocolate milk as a health product.

 

Today we have a vast and biologically diverse collection of parasites and the insects/crustaceans/snails/arachnids that carry and transmit them. These are used by researchers both in the museum (such as myself and colleagues) but also internationally through collaborative work.

 

ZEST Zanzibar.jpg

Collaboration is key - Zanzibar Elimination of Schistosomiasis Transmission (ZEST) programme key players: the Zanzibar Ministry of Health, Public Health Laboratories Pemba, the World Health Organization, SCI, SCORE, Swiss TPH, NHM and others

 

We are immensely proud of our collections and the work we do in this field especially of the biological information we can contribute to health programmes in endemic countries. One of our most exciting contributions is to the Zanzibar Elimination of Schistosomiasis Transmission (ZEST) programme where we are working in collaboration with the Zanzibar Ministry of Health, various NGOs, the World Health Organization and the local communities to identify and implement the best tools and methods to achieve schistosomiasis elimination in Zanzibar. This would be the first time a sub-Saharan African country would achieve schistosomiasis elimination. Fingers-crossed we are up to the challenge! You can read more about this project in an earlier post on our Super-flies and parasites blog

 

On Thursday we are bringing out our Parasites and Vectors specimens to showcase them to the public galleries and answer any questions relating to these fascinating yet dangerous organisms. Our wonderful scientists and curators will be on hand to talk to people about our collections and research as will collaborating scientists from the London Centre of Neglected Tropical Disease Research who will talk to you about the diseases and the challenges faced to achieve the WHO 2020 goals. Please do pop by and say hello, come and look at our specimens and help us raise awareness of these devastating diseases and the fight to control and eliminate them.

 

Fieldwork_TZ_FionaAllan_SCAN.jpg

We are working together with schools, communities, government and research institutes to fight Neglected Tropical Diseases. Schistosomiasis fieldwork photo with the team from the National Institute for Medical Research in Tanzania

2

Hello blood fluke enthusiasts,

 

Once again I am posting about my favourite parasite, the blood fluke called Schistosoma. I want to tell you about an exciting project that is going on on the beautiful archipelago of Zanzibar.

 

Zanzibar.jpg

Zanzibar is a semi-autonomous archipelago of Tanzania. The two main islands are called Unguja (or Zanzibar island) and Pemba. We are working on a very exciting project to stop schistosomiasis transmission on these islands.

 

This is a bit of a long post but please if you can bear it read on! If successful this project could revolutionize our approach to schistosomiasis (blood fluke disease) control.

 

Schistosomiasis control

 

As I explained in my first blood fluke post, infection with the blood fluke Schistosoma causes a disease called Schistosomiasis (aka Bilharzia).

This disease affects over 200 million people worldwide, the majority living in sub-Saharan Africa. It is strongly linked to poverty and does heart-breaking damage to children and adults in the poorest and most vulnerable communities.

 

bloody urines.jpgSchistosomiasis-boy.jpg

The clinical symptoms of schistosomiasis aka bilharzia, the blood fluke disease: (L)  bloody urine from children excreting the parasite eggs through urination and (R) a malnourished child with a hugely enlarged liver due to damage caused by the parasite eggs stuck in the tissue.

 

Depending on the species of the infecting schistosome worms the disease can cause:

•          Diarrhoea, bloody stool, blood in urine, painful urination.

•          Anaemia, stunted growth, enlarged liver and spleen.

•          Damage to the liver leading to liver fibrosis.

•          Damage to the genitals, kidneys and bladder potentially leading to bladder cancer.

•          Increased risk to sexually transmitted diseases like HIV.

 

Currently there is no vaccine. Schistosomes are masters of disguise when it comes to the immune system which means vaccines that rely on your immune system are difficult to develop. Researchers are trying though! Thankfully there is an effective oral drug called Praziquantel that kills the adult worms in humans. BUT it is the only effective drug against all species of this parasite, which raises concerns regarding drug resistance, and it does not stop people from becoming re-infected.

 

school children in East Africa being treated with Praziquantel the only drug effective against all schistosome blood flukes.jpg

A boy being treated for schistosomiasis. The treatment is an oral dose of Praziquantel. Although the side-effects are minimal the pill is quite bitter and can cause stomach upsets so making sure a child has some yummy juice and a bit of food with treatment is important.

 

Up until now efforts to control schistosomiasis in sub-Saharan Africa have focused on regular treatment of school children to reduce infections and prevent the severity of the disease. The theory being that if you treat regularly you can prevent the child from developing those nasty outcomes listed above. The drug is donated and there are excellent NGOs providing support to programmes wishing to deliver the drugs to schools. Hurrah!

 

However this regular treatment approach has NOT interrupted schistosomiasis transmission in a sub-Saharan African country. This means it requires a (very) long term commitment from the programmes and ministries of health. A lot of these countries have weak and struggling health systems burdened with many challenges (lack of water & electricity, clean needles & surgical equipment, painkillers, antiseptic cream etc) as well as a whole range of poverty-loving diseases to deal with. How long can a struggling health system keep up 'regular' treatments in difficult to reach areas? Once these are missed, or the programme is interrupted, the disease comes back.

 

What about stopping transmission?

 

Elimination = stopping local transmission

 

This is is exactly what is being attempted in Zanzibar through a multi-institute and major collaborative project led by:

 

There are three additional key players:

  • My friend and colleague Dr Steffi Knopp from the Museum and the Swiss Tropical and Public Health Institute. Steffi is tirelessly overseeing the details and daily running of this project as well as analysing the results and publishing whatever new insight we get into schistosomiasis elimination from this ambitious project.
  • SCORE (Schistosomiasis Consortium for Operational Research and Evaluation) funds this project with money from the Bill and Melinda Gates Foundation.
  • Schistosomiasis Control Initiative, a wonderful NGO based at Imperial College providing countries with all the logistical and implementation support needed for national treatment programmes (they do accept donations and fundraising so if interested just get in touch.

 

Together (and with a few other people whom I have not mentioned and I do hope will forgive me), they form (drum roll please...):

 

ZEST – the Zanzibar Elimination of Schistosomiasis Transmission

 

(And now superhero music, or better yet Vangelis’ Chariots of Fire)

 

This project aims to answer the question:

What tools do we have to stop transmission and what is the most effective way of achieving this?

 

Schistosomiasis life cycle.jpg

Transmission between humans and snails occurs in the local water bodies. In order to reach the water the parasite eggs come out with stool or urine. Because there are rarely toilets and no sewage system or human waste treatment facilities this human waste reaches the water that people frequent and the snails live in. The parasite is then able to continue its life cycle by first infecting a snail and then infecting a human.

 

So where on the life cycle can we intervene to stop transmission?

  1. We can kill the adult worms inside people by treating them with Praziquantel – Mass Drug Administration to communities at risk of infection.
  2. We can remove the intermediate host snail from the human water contact areas – Snail Control in local water contact sites.
  3. We can stop the eggs from reaching the water and warn people from going into known transmission sites – Behavioural Change Intervention.

 

West Africa schistosome transmission site and local water collection point.jpg

A typical transmission site for schistosomiasis. Families come to the water to wash, clean, fish, etc.

 

These are the three interventions we have available to us. What is the most effective way to eliminate schistosomiasis in an area?

 

In order to test this ZEST has randomly organised all the distinct community areas of Zanzibar and Pemba into our three intervention groups:

 

Praziqauntel for ZEST.jpg

A car full of donated Praziquantel treatment for schistosomiasis, about to head out to the communities.

 

tested for schisto Pemba.jpg

Collecting urine samples from children to test for the presence of schistosoma eggs. This is how we diagnose schistososmiasis.

 

Snail control.jpg

Spraying local water contact sites with a chemical that kills the aquatic snail host of schistosomes.


Snail collecting Fiona.jpg

This is a familiar face to you I’m sure, Dr Fiona Allan our resident schistosome snail expert surveying sites in Zanzibar. She has a sixth sense on where the snails will be and where transmission occurs. We are now calling her 'snail whisperer'.

 

1. Mass Drug Administration – Treatment of communities twice a year with Praziquantel. Now the truth is it would be unethical not to treat people we know to be suffering from the disease purely in the name of science. We may be scientists but we’re not evil scientists! So EVERYONE on BOTH ISLANDS IS GETTING TREATMENT. But in group 1 they are ONLY receiving treatment. No snail control, no behavioural intervention. This is to test the effectiveness of the current approach (treating people regularly).

 

2. Snail Control - Snail Control by spraying transmission sites with a safe and gentle dose of Niclosamide. The communities are receiving treatment as normal however their villages have been surveyed for human-snail water contact and schistosomaisis transmission sites. These sites then get sprayed with the molluscicide (chemical that kills snails) Niclosamide. Niclosamide is also used as parasite treatment for livestock and is safe for mammals and birds. It does kill all snails though so we only want to use it in the areas that have transmission, nowhere else. We also know that it quickly breaksdown in the environment. This is good because it means it does not linger around however it’s also bad because a good rain storm and off it goes down the river without killing any schistosome infected snails.

 

3. Behavioural Change Intervention – Mobilizing communities by teaching them about schistosomiasis transmission and supporting them to find their own solutions. Education teams go out to the communities, teach the village leaders, the religious leaders, the teachers about schistosomaisis and the blood fluke life cycle. They then help the communities to develop ways of raising awareness of schistosomiasis, educating parents and children and encouraging positive behaviour change that will prevent disease transmission. This has taken form of:

    • Special Kichocho (Swahili word for schistosomiasis) events, where safe games are played, little educational sketches are watched and fun is had.
    • Training teachers to teach children at schools about the schistosoma life cycle.
    • Building latrines and urinals for children and adults to use instead of urinating outside.
    • Making signs warning people of the presence of kichocho in the water and the risk of infection.
    • Other solutions like safe clothes washing areas etc.

 

Kichocho_transmission_signs.jpg

Big red signs warning the community about the presence of Kichocho (schistosomes) and konokono (snails - intermediate hosts of schistosomes) in the local water.

 

The behavioural intervention team on Pemba and Michael, an MSc student from the University of Tulane, with the help of the wonderful behaviour scientist Dr Bobbie Person, have created an amazing educational video in Kiswahili to show in villages and schools. Do take a look - it is fantastic!

 

 

A video made by the schistosomiasis behaviour intervention team on Pemba with the help of Michael Celone to teach communities about the life cycle of Kichocho (schistosomiasis). The video is in Kiswahili with English subtitles.


 

 

A second video teaching communities about behaviours that increase transmission and risk of infection as well as what they can do to prevent Kichocho (schistosomiasis). The video is in Kiswahili with English subtitles.

 

ZEST.jpg

The Zanzibar Elimination of Schistosomiasis Transmission study design. MDA – Mass drug administration of safe anti-schistosomal drug Praziquantel delivered to the villagers twice a year. Snail Control – removing snails in human water contact sites by spraying with safe molluscicide Niclosamide. Behaviour Intervention – Community-lead behavioural change intervention to stop behaviour that leads to transmission/infection of schistosomes.

 

Wish us luck and watch this space!

1

Hello honorary parasitologists,

 

I know there has been a bit of radio silence on my part and I apologise, summer was calling me and there was a lot of stuff to get through before I could escape on annual leave.

 

I'm back now and picking up where we left off. Perhaps you are wondering what happened to all those samples we collected in Tanzania in May (see previous posts). Well wonder no longer, I am about to reveal all.

 

A quick recap of our collecting in Tanzania:

  1. We collected miracidia, the parasite larval stage from infected children, and stored them onto special paper (called Whatman® FTA cards) that stores their genetic material.
  2. We also collected the intermediate host snail from potential transmission sites on the banks of Lake Victoria.
  3. Finally we collected cercariae, the larval stage from infected snails, and stored their genetic material on the Whatman® FTA paper.

 

Visiting+schools+to+collect+schistosomes700.jpg

Visiting schools to identify infected children, collect the schistosome larval stage (miracidia) and treat the children.

 

Collecting snails in Tanzania.jpg

Snail collecting on the banks of Lake Victoria.

 

Schistosoma mansoni cercaraie&Biomphalaria sudanica.jpg

Collecting cercariae, the Schistosoma larval stage, from infected snails.

 

Whatman FTA and punch.jpg

Whatman® FTA cards store the genetic material of schistosome larvae collected from infected children and/or snails.


 

Storing our collected schistosome larvae on Whatman® FTA cards is ideal for us because:

  1. We avoid storing them in flammable liquids like ethanol.
  2. We avoid having to bring back live, infected snails.

 

...two things that aiports and customs really don't like!

 

The Whatman® FTA cards lyse (break) open the parasite cells and lock the genetic material onto the card, keeping it stable and safe at room temperature until we need to use it. So this means we can bring back our samples safely in our suitcases. Hurrah!

 

The snails, on the other hand, have to be stored in glass tubes with ethanol, so these we have to leave behind in the safe hands of the National Institute for Medical Research, Mwanza. Our collaborators take good care of them until we can arrange a courier service to bring them to the Museum.

 

SCAN_FTA card storage closeup.jpg

Whatman® FTA cards with collected schistosome genetic material from Tanzania, catalogued and stored safely by SCAN in the Molecular Collections Facility at the Museum.

 

Once back in the UK I hand over all collected samples and forms to the wonderful SCAN,Schistosomiasis Collection at the Natural History Museum, team. SCAN takes care of the thousands of schistosome samples collected from all over the world and stored at the Museum. This colleciton is very precious and in high demand for lab-based scienists researching the genome of the parasite and host snail in search of new ways to understand and control the disease. 

 

SCAN cares for collected samples and manages all the associated data, such as:

  • GPS coordinates - so we know where the sample has come from.
  • Collection method - what technique was used to collect the sample?
  • Date of collection - how old is the sample?
  • Storage medium -  is the sample stored on Whatman FTA card or ethanol or any other storage tool?
  • Data on the parasite host - did the sample come from an infected human, cattle, snail? If a snail what species? If a human what age? Gender? 

And lots more.

Screen shot 2014-08-11 at 20.14.55.jpg

The fieldwork forms I fill in when collecting samples in Tanzania. I hand these forms over to the SCAN team along with all my collected samples. They then have the frustrating task of trying to decipher my handwriting.

 

You have met two members of the SCAN team in my previous posts; Fiona Allan, who acted as our fieldwork photographer whilst helping me in Tanzania and Muriel Rabone, who came to my rescue after Fiona had to head back to the UK. There is just one more person for you to meet; the ever-patient and resourceful Aidan Emery, who manages SCAN

 

SCAN_me&F going trhough forms.jpg

Fiona and I going through my fieldwork forms and samples - "what have you written here? It's illegible!" Oops!

 

As you can see there is A LOT of data that goes with each and every schistosome/snail collected and researchers need to have all this information when analyising a parasite or snail sample. SCAN ensures that all this information is properly entered into a database and linked with the samples stored in the Molecular Collection Facility (more on this in a bit).

 

The SCAN team has even created a wonderful online catalogue of all the collected samples they care for, along with all the data linked to each sample. This greatly assists researchers from all over the world, allowing them to have a look and see what samples are available to them. 

 

SCAN_F&A_bluebooties700.jpg

Fiona and Aidan storing the Tanzanian schistosome samples collected onto Whatman® FTA cards. Fiona is showing off the little blue booties we have to wear in the Molecular Collections Facility to avoid bringing in contaminants or anything that could harm the hundreds of thousands of precious samples stored there. 

 

Screen shot 2014-08-11 at 19.17.56.jpg

The SCAN team takes a photo and measures the size of every snail that arrives from our African collaborators. In order to extract the DNA from the snail for molecular work the shell must be crushed and removed. It is good to have a picture of what the shell looked like before doing so.

 

The Molecular Collections Facility is a crucial facility in the Museum, as it has all the equipment necessary to keep molecular and genetic samples (such as our schistosome samples) stored safely, stabily and for a long, long time. What equipment am I talking about? I mean: -80 freezers, nitrogen tanks, air-tight cabinets, equipment to release/elute genetic material from stored samples, centrifuges, pipetting robots, you name it. It is run by the very helpful Jackie Mackenzie-Dodds.

 

MCF_Jackie700.jpg

Jackie runs the Molecular Collections Facility where all our schistosome samples are stored. All the freezers and nitrogen tanks have alarms linked to them to make sure they continue to function correctly. If one fails an alarm goes off on Jackie's mobile phone so no matter where she is she is immediately notified and able to respond.

 

MCF_nitrogen&Jackie.jpg

Jackie is showing me the liquid nitrogen tanks in the Molecular Collections Facility. Whilst nitrogen in gas form is harmless, liquid nitrogen is very, very cold and any contact with it can cause severe frostbite, even freeze your arm off. Also as it boils it uses up a lot of oxygen in the air, which can lead to asphyxiation. So oxygen monitors are always used. Its incredible freezing ability means it is very effective at storing rare, degraded and old tissue samples.

 

So there you have it, all our samples are archived carefully until we are able to perform the molecular work we need to do for species identification and to determine how the genetic diversity of the parasites is being affected by treatment control programs. My next couple of blood fluke posts will be about the techniques we use to do this. So read up on Polymerase Chain Reactions (PCR)... it does feature!

 

SCAN_F&me+going+through+forms700.jpg

Fiona and I have managed to decipher my handwriting! Hurrah! The samples are saved!

0

Welcome to the Parasites and Vectors Division blog. Let me introduce our group and the superbugs and parasites we work on (WARNING NASTY IMAGES, strong stomachs required).

 

The world is full of amazing animals, but there are some that have a more sinister side. Our scientists and curators look at insects, arachnids and worms that live on or inside other animals, including people.

 

Blue bottle fly - Calliphora vicina - forensic entomology.jpgThe blue bottle fly, Calliphora vicina colonizes corpses and is used in forensic entomology to help crime scene investigators determine time of death.

 

I’ll be using this blog to write about what we do, why we study these complex organisms and how we collect data in the field and in our laboratories.

 

I’ll reveal more about the grisly creatures we study later, but for now here’s an introduction to the main players:

 

  • Flies can cause the horrible disease myiasis, but are also helping scientists to determine crucial information at crime scenes through forensic entomology.
  • Mosquitos have been called the world’s most dangerous animal, carrying diseases like malaria and viruses like dengue.
  • Ticks and mites (Acari) can cause huge damage to crops, and spread diseases such as Lyme disease and babesiosis.
  • Blood flukes are parasitic worms that cause schistosomiasis, a disease affecting over 200 million people worldwide. Museum scientists are studying these worms to help affected countries control schistosomiasis, a neglected tropical disease. More about this in my next post!
  • Flatworms can be parasitic monsters, but their amazing capacity for regenerative growth could inspire regenerative medicine techniques and anti-aging therapies in humans.

 

Myiasis .jpgMyiasis wounds on sheep in Hungary produced by the spotted flesh ply or screwworm fly (Photo credit Alexander Hall).

 

We use a range of DNA techniques, from mitogenomics to next generation sequencing to investigate, describe and understand parasitic worms. None of our work would be possible without the Museum’s extensive parasite and vector collections. Erica McAlister curates one of these, the diptera (true flies) collection, which you can read more about on her (very entertaining) blog.

 

schisto_venous_system_cattle.jpgDon't let size fool you; these tiny blood flukes living in the blood veins of animals cause a debilitating disease called Schistosomiasis.


That’s it for now but check back soon - I’ll be setting off to Tanzania next week in search of blood flukes and will surely have some stories to tell from the field!