Skip navigation

The NaturePlus Forums will be offline from mid August 2018. The content has been saved and it will always be possible to see and refer to archived posts, but not to post new items. This decision has been made in light of technical problems with the forum, which cannot be fixed or upgraded.

We'd like to take this opportunity to thank everyone who has contributed to the very great success of the forums and to the community spirit there. We plan to create new community features and services in the future so please watch this space for developments in this area. In the meantime if you have any questions then please email:

Fossil enquiries: esid@nhm.ac.uk
Life Sciences & Mineralogy enquiries: bug@nhm.ac.uk
Commercial enquiries: ias1@nhm.ac.uk

1 ... 18 19 20 21 22 Previous Next

Science News

330 Posts
0

The differences between Neanderthals and Homo sapiens, our own species, have been widely debated since the discovery of the remains of Homo neanderthalensis in the 19th Century.  Professor Chris Stringer, one of the Museum's leading research scientists from the Department of Palaeontology, is a specialist on the origins and variation of humans, their ancestors and their relatives.  In particular, he has worked for many years on Neanderthals.

 

One characteristic of Neanderthals that captures both public and scientific imagination is their different physical appearance, having pronounced brow ridges on the skull, a prognathous face, wide nose and a stongly-built body with short legs.  It has traditionally been argued that Neanderthals have relatively larger sinuses as a response to living in cold climates - they are know to have lived in Europe during periods of lower temperatures - the ice ages.  The traditional argument has been that this characteristic warmed the air as it was breathed in.

 

However, new research published in the Journal of Human Evolution from Todd Rae from the University of Roehampton, Thomas Koppe from the University of Griefswald, Germany, and Chris Stringer, NHM, suggests that the range of sinus size for Neanderthals was in the same proportion to body size as that of European Homo sapiens.  They also argue that the normal response of mammal species in cold climates is actually to develop smaller sinuses.  Their conclusion is that the differences between ourselves and Neanderthals for this characteristic can be explained simply by genetic drift - the random genetic changes that occur in different populations and species over time - and not as a response to their environment.

 

Rae, T. C., T. Koppe and C. Stringer (2011). "The Neanderthal face is not cold adapted." Journal of Human Evolution 60(2): 234-239. doi:10.1016/j.jhevol.2010.10.003

0

Understanding the diversity of life is central to the mission of the Natural History Museum. Science sees diversity in many ways: populations, species, ecosystems, individuals or genes and the Museum's collections of more than 70 million items are used by scientists for research on many aspects of diversity.  The collections have developed over the past 250 years with a very strong emphasis on the idea of the species, but reflect diversity within species as well - the differences between populations from different areas, for example.

 

What separates one species from another is not always an easy question: it is a key question for the science of taxonomy and has important practical implications.  The established biological species concept defines two species as two groups of organisms that cannot interbreed to produce fertile young when in the same location.  When different species are present in the same location, this can be observed in theory.  However, when two groups of similar organisms are geographically separate, are they different populations, different subspecies, or different species? This will be the case for many thousands of species and has led to heated debate among scientists who have taken different views.

 

Beyond science, this is of importance because the species is often used in practical policy-making and economic activity.  There needs to be accurate definition for biodiversity conservation, pest control in agriculture, human health and other activities.

 

A group of collaborating scientists from Oxford and Cambridge Universities and from BirdLife International have used the Museum's bird collections to try to define a reliable standard for species. They aimed to define how much genetic, morphological and behavioural distance there was between known species and subspecies, and within species.

 

The scientists looked at pairs of 58 closely-related species and subspecies, including European swallows and linnets, North American blackbirds and tyrant flycatchers and African Illadopsis. They examined more than 2,000 specimens from the NHM bird collections and more than 140 from Louisana State University for morphological data and plumage, and looked also at song, ecological and behavioural differences. The intention was to use this suite of characters to define a reliable and objective difference between species.

 

Tobias et. al (2010) published their results in the journal Ibis, concluding that this is a reliable way of confirming species separations and propose that this could be used increasingly to improve the reliability of understanding of bird diversity. An article in Nature (Brooks and Helgen, 2010), commenting on the paper, suggested that there could be very interesting possibilities in applying similar techniques to other groups of organisms and with DNA data.

 

Thousands of visiting scientists routinely use the Museum's collections as a research resource: the collection represents a body of evidence to address new questions and test established knowledge of natural diversity, and continues to develop as research interests expand.

 


TOBIAS, J. A., SEDDON, N., SPOTTISWOODE, C. N., PILGRIM, J. D.,  FISHPOOL, L. D. C. and COLLAR, N. J. (2010), Quantitative criteria for  species delimitation. Ibis, 152: 724–746.  doi: 10.1111/j.1474-919X.2010.01051.x

 

Brooks, T. M. and K. M. Helgen (2010). "Biodiversity: A standard for species." Nature 467(7315): 540-541.

0

At the core of the Museum's scientific work lies taxonomy: the description, classification and naming of species.  This science is the foundation for all the biological sciences - if we cannot accurately describe the organism, the biological research that we do will not be reliable.  Species are essential concepts in describing diversity and exploring evolution - the Museum's collections and research centre on taxonomy, but integrate it with all sorts of other scientific approaches.

 

Taxonomy is published in the scientific literature in a number of ways - individual species results are published increasingly in short papers, sometimes online.  However, there is great value in ambitious works that cover whole groups of organisms - it allows all members of the group to be compared in a systematic way and new ideas and conclusions on diversity and evolution explored.

 

The final part of Dr Norman Robson’s Hypericum monograph was published in Phytotaxa. This an important monograph of a species-rich flowering plant genus; Hypericum (approximately 480 species) is one of 100 plant genera which together represent 22% of angiosperm (flowering plant) diversity. 

 

A genus is a classification group for a number of individual closely related species. Hypericum is a genus of flowering plant species that is worldwide in distribution and familar as a garden plant in the UK and some species have been used in the past in herbal treatments. (The name St   John’s Wort is commonly used for these plants.) A New Zealand species, Hypericum gramineum, is shown below.

 

Hypericum gramineum.jpg

 

 

The entire work comprises 1,247 pages in 11 parts, the culmination of 27 years of work and more than 50 years of research by Dr Robson on this genus. The editorial in Phytotaxa states that “The size of such genera means that complete monographic treatments to account for species diversity are time-consuming, costly and labour-intensive. Consequently, the species-level taxonomy of most such groups is poorly known [and this] presents a substantial barrier both to the goal of completing the global inventory and to understanding the evolution of the diversity they contain. Hypericum is now a notable exception to this problem”

 

 

Phytotaxa 4: 1258

0

Myxozoans are a diverse group of microscopic endoparasites - tiny worm-like parasites that live within other organisms, depending on their hosts for nutrition, oxygen and other needs.  Examples of myxozoans featured as NHM species of the day in 2010 were  Buddenbrockia plumatellae  and Tetracapsuloides bryosalmonae.

Scientific study of evolution and evolutionary relationships has in the past often depended on study of the physical forms of organisms (morphology) and comparing particular characteristics, such as body plan, organs, limbs or other features. Similarities and differences in these characters are used to classify the organisms.  However, with some organisms, particularly parasites, evolution can result in the loss of features with an apparently more simple body form.  This makes clarification of relationships difficult.  However, the use of DNA sequences can provide additional information that leads to understanding of evolutionary relationships and a clear evolutionary classification (phylogeny).

Myxozoans have been the focus of much controversy regarding their phylogenetic position. Two dramatically different hypotheses have been put forward for the position of the Myxozoa within Metazoa (all multicelled animals).

The first hypothesis, supported by rDNA sequence data (a specific kind of DNA from the ribosomes of the cell), suggests that Myxozoa is a sister group to Bilateria (all organisms with a single line of symmetry to their body plan, ranging from simple worms to humans, and representing most groups of animals). However, the alternative hypothesis, supported by phylogenomic data (a broader range of DNA) and morphology, suggests that Myxozoan are cnidarian. Cnidarians are an animal group containing sea anemones, coral and jellyfish that have radial symmetry and a very different body plan from the Bilateria.  These different ideas represent evolutionary events that would have occurred hundreds of millions of years ago.

Professor Beth Okamura (NHM department of Zoology) and colleagues, funded by the US National Science Foundation, investigated these conflicting hypotheses with Buddenbrockia and explored the effects of missing data, different statistical methods, and different models on evolutionary classification.  In addition, they identified subsets of the data that most influence the placement of Myxozoa and explored their effects by removing them from the datasets.

The results confirm the existence of two relatively stable placements for myxozoans and demonstrate that conflicting signal exists not only between the two types of data but also within the phylogenomic dataset. These analyses underscore the importance of careful model selection, taxon and data sampling, and in-depth data exploration, when investigating the phylogenetic placement of highly divergent taxa.

In other words, the  available information does not yet allow Myxozoans to be placed  definitely within one or other fundamental group - further development of data, and new scientific techniques will be needed to answer this question, but the work in the paper is important in defining the current limits and uncertainties of this area of science, and suggests ways forward for the future.

Evans, N.M., Holder, M.T., Barbeitos, M.S., Okamura, B. & Cartwright, P. 2010. The phylogenetic position of Myxozoa: Exploring conflicting signals in phylogenomic and ribosomal datasets. Molecular Biology and Evolution 27: 2733-2746. doi:10.1093/molbev/msq159

0

Life in Cambrian seas, between 488 and 542 million years ago, was diverse and often very different from more recent organisms.  The rocks of the Burgess Shales in the Canadian Rockies have preserved incredible organisms, including the free-swimming Anomalocaris (see image below) 

NaturalHistoryMuseum_022801_IA.jpg

Research on this fauna has been active for many years, with public interest stimulated by the writing of Stephen Jay Gould in his 1989 book Wonderful Life.

Dr Greg Edgecombe from the Museum's Palaeontology Department will host Dr Allison Daley, who has been awarded a prestigious postdoctoral fellowship from the Swedish Research Council. Allison will join the museum for two years (2011-2012) to work with Greg on the evolution and ontogeny (development) of anomalocaridids.

Previously unstudied material of Anomalocaris and related taxa from the Burgess Shale housed at the Royal Ontario Museum will be a particular focus of this study, including a geometric description of shape changes in the more robust body parts through the course of development. New collections from the Cambrian of Australia will also be documented, and all material used to refine the evolutionary classification of anomalocaridids within the arthropod stem-group.

0

In November 2010, Drs David Gower and Mark Wilkinson (Zoology) represented the NHM at the formal launch of the International project LAI: Lost Amphibians of India at the University of Delhi, India.

This project aims to “rediscover” Indian amphibian species in the wild that have not been recorded scientifically for anywhere between 18 and 169 years. The concern is that some of the 50 or so species on the wanted list might have become extinct, given that amphibian declines and extinctions have been reported worldwide in recent years.

Many of the “lost” Indian species are known only from their museum type specimens, often historical material held only in the NHM, having been collected during the colonial period.

The NHM is an official Institutional Partner in the LAI project along with several international conservation NGOs. The project is organised by the University  of Delhi and supported by the Indian government Department of Biotechnology, Department of Science and Technology, and Ministry of Environment and Forests.

Both David and Mark have worked in India and other countries with local collaborators over many years, focusing in particular on the diversity, evolution and biogeography of the burrowing, legless caecilian amphibians.  Two South American examples of these animals can be seen among the species of the day for 2010: Rhinatrema bivittatum; and Atretochoana eiselti.

0

Charles Darwin is best known as an evolutionary biologist but he also had significant success as a geologist.  His first three scientific books after his account of the voyage of the Beagle explored the geology of coral reefs, volcanic islands and South America: The Structure and Distribution of Coral Reefs (1842); Geological Observations of Volcanic Islands (1844); and Geological Observations on South  America (1846).

Dr Brian Rosen, a Scientific Associate in the NHM Department of Zoology, gave an invited public lecture, hosted by the Bermuda Institute of Ocean Sciences (BIOS) in their ‘Distinguished Lecture Series’ in November 2010, entitled ‘Red or Blue? Darwin's Bermuda Dilemma and his Enduring Subsidence Theory of Coral Reefs’, in which he discussed Darwin's ideas and conclusions.

Darwin's subsidence theory of the origin of coral atolls was based on the idea that the world's ocean floors as a whole were subsiding, and that atolls had developed as coral growth kept pace with sea level on the sinking foundations of former volcanoes. The sheer scale and simplicity of Darwin's idea was reflected in his famous coral reef map, on which he shaded atolls and most other oceanic reefs in blue (inferring subsidence), and most reefs elsewhere in red (inferring uplift or stability).

Darwin's theory was initially acclaimed but over time it seemed too revolutionary for many - alternative ideas such as sea level changes were preferred.  However, by the mid twentieth century, it became clear that the reef deposits of most atolls did indeed extend hundreds of metres beneath their surfaces - far deeper than can be explained by glacial sea level changes alone. 

We know now that atolls do form because islands sink gradually as a  consequence of tectonic plate movement.  While Darwin was correct about  the subsidence, tectonic plate movement and sinking as a reason was not proposed until 1912, althougth this was hotly contested until scientific explanation in the 1950s and 1960s.

Although Darwin did not visit Bermuda, he included it in his coral reef book. Bermuda's reefs - being essentially ring-like in arrangement, and with a central lagoon - are atoll-like, but for other reasons Darwin was equivocal about whether it was a true atoll, so he left it uncoloured on his reef map. In his lecture Brian Rosen attempted to resolve Darwin's dilemma, based on the fact that the sea levels at Bermuda have fluctuated over time.

 


0

The Museum's collections are used for research by more than 8,000 visiting scientists each year, and many thousands of specimens are sent on loan to other institutions for research purposes.

 

Scientists from the University of East Anglia, the Royal Botanic Gardens, Kew, and the Universities of Sussex and Kent have used the NHM botany collections and those of other institutions to look at how the flowering time of orchids varies with spring temperatures.  They looked at recent field records of flowering date and temperature (1975-2006) for the UK Early Spider Orchid, Ophrys sphegodes, and compared these with historical temperature records and dated flowering specimens in collections (1848-1958).

 

Their research, published in the Journal of Ecology, showed that the orchids responded to temperature in the same way in the two periods.  This means that collection specimens could be of significant value in looking at the responses of plants to past climate patterns for periods when there were no records kept of flowering dates.

 

This work indicates the potential value of collections for investigating ecological responses to climate and as research resources for new scientific interests.

 

 

Karen M. Robbirt, Anthony J. Davy, Michael J. Hutchings and David L. Roberts (2011) Validation of biological collections as a source of phenological data for use in climate change studies: a case study with the orchid Ophrys sphegodes. Journal of Ecology, 99, 235–241 doi: 10.1111/j.1365-2745.2010.01727.x

1

Meteorites from the Moon

Posted by John Jackson Jan 4, 2011

Samples from the Moon come either from lunar landing missions - the US Apollo or Soviet Luna sample return missions - or from lunar meteorites.  The Moon's craters show a history of impacts by smaller space bodies that, when they have collided with the Moon, have flung Moon rock into space. 

Some of this material has eventually fallen to the surface of the Earth as lunar meteorites, although these have only been recognised as such since 1982 when some unusual meteorites were compared with rocks retrieved by lunar missions. Over 130 meteorites have now been recognised as of lunar origin.

Scientists from the Museum's meteorite research group, Professor Sara Russell and Anton Kearsley, have collaborated with partners from London University's UCL and Birkbeck College to study four lunar regolith breccia meteorites that provide sampling of the lunar surface from regions of the Moon that were not visited by the US and Soviet missions. They used equipment in the Museum's analytical laboratories to show that these meteorites represent impact melts formed from rocks of compositions distinct from those sampled by the Apollo missions - there is considerable variability in rock types across the surface of the moon.

JOY K H, Crawford I A, RUSSELL S S & KEARSLEY A T (2010) Lunar meteorite regolith breccias: An in situ study of impact melt composition using LA-ICP-MS with implications for the composition of the lunar crust. Meteoritics and Planetary Science 45: 917-946. DOI: 10.1111/j.1945-5100.2010.01067.

0

 

Trichuriasis is a common intestinal worm infection in Africa and in other parts of the World, affecting almost 800 million people.  Trichuris is the nematode worm that causes the condition and is usually transmitted by faecal contamination of soil or food.  Heavier infestation can lead to pain and a range of health impacts that can seriously diminish quality of life and which may contribute to premature death, particularly in children. 

The World Health Organisation describes trichuriasis as one of the Neglected Tropical Diseases - diseases that thrive in conditions of poverty. Unsafe water, lack of access to health services, inadequate housing, malnutrition and poor sanitation all increase vulnerability to infection by this and other diseases such as leprosy, dengue and schistosomiasis.

It is not uncommon for people to suffer from both trichuriasis and from schistosomiasis, another condition caused by a parasite, and these may be treated by the same drugs. Research on the disease leads to better understanding and more effective treatment.

Dr Stefanie Knopp undertook her PhD research on treatment of trichuriasis at the University of Basel in collaboration with Dr David Rollinson and Dr Russell Stothard in the Museum's Department of Zoology, who are specialists in schistosomiasis.  She has recently published important research from her PhD in Clinical Infectious Diseases (a high-profile journal with an impact factor of 8.3) in a paper on on the treatment of trichuriasis in Zanzibar, Tanzania. 

Single doses of the drugs albendazole and mebendazole had in the past shown limited effectiveness in the treatment of trichuriasis. The combination of albendazole with ivermectin was known to improve treatment, but a mebendazole–ivermectin combination had not been previously investigated.

The research showed that addition of ivermectin improves the therapeutic outcomes of both albendazole and mebendazole against Trichuris trichiura, and may be considered for use in soil-transmitted helminth control programs and individual patient management.

 

Knopp S, Mohammed K A, Speich B, Hattendorf J, Khamis I S, Khamis A N, Stothard, J R, Rollinson D, Marti H and Utzinger, J  (2010) Albendazole and Mebendazole Administered Alone or in Combination with Ivermectin against Trichuris trichiura: A Randomized Controlled Trial.  Clin Infect Dis.  51 (12): 1420-1428. doi:                                                                          10.1086/657310

 

0

The NHM has a strong record in scientific research on parasitic worms, particularly evolution and identification, with wide international collaboration.  Parasitic worms can cause serious health effects in humans and other organisms, so scientific understanding is essential for effective control.

 

The research groups produce many scientific papers every year, but two produced in 2008 have just been recognised as being especially influential in the subject, having been mentioned ("cited") most frequently as being of importance by other scientists in their publications.

 

Dr Peter Olson (Zoology) recently received recognition for the “Top Cited Article 2008-2010” from Parasitology International for an invited review paper on Hox genes and parasitic flatworms. (Hox genes control part of the sequence of development of animals from egg to adult) The paper reviews the history of work on Hox genes in the phylum Platyhelminthes, introduces new data from the model tapeworm Hymenolepis, and sets the stage for how the study of developmental genes can inform a series of outstanding questions in the evolution of the parasitic forms.

 

Olson PD. 2008. Hox genes and the parasitic flatworms: New opportunities, challenges and lessons from the free-living. Parasitology International 57, 8-17.

 

Dr Rod Bray (Scientific Associate Zoology) is similarly an author on the Top Cited Article 2008-2010, this time in the International Journal for Parasitology. The paper presents the accumulated evidence for a major change in the classifiation of the orders of the Class Cestoda (tapeworms).

 

The old order Pseudophyllidea, which included tetrapod parasites, such as the common human tapeworm Diphyllobothrium latum, and fish parasites, such as the freshwater pest species Bothriocephalus acheilognathi, is separated into two orders. The fish parasites are included in the order Bothriocephalidae and the tetrapod parasites now make up the order Diphyllobothriidea. These groups have long been thought to be distinct - but closely related - and probably monophyletic (arising from one common evolutionary ancestor). 

 

However, classifications based on molecular data (DNA) from several sources indicate that these groups are polyphyletic (arising from several different evolutionary origins, and therefore not a natural group in evolutionary terms). The conclusion from the molecular results has been backed up by both new and previously reported morphological and biological information. Latest evidence suggests that the Diphyllobothriidea is closest to the unsegmented ‘primitive’ tapeworms, but the Bothriocephalidea is sister to the ‘higher’ tapeworm orders.


Kuchta, R., Scholz, T., Brabec, J. and Bray, R.A. (2008). Suppression of the tapeworm order Pseudophyllidea (Platyhelminthes: Eucestoda) and the proposal of two new orders, Bothriocephalidea and Diphyllobothriidea. International Journal for Parasitology, 38, 49-55. doi:10.1016/j.ijpara.2007.08.005.

 

 

0

A new paper in the Proceedings of the National Academy of Science explores the way in which new species of plants are described from specimens that may already have been in herbarium collections for many years, and underlines the importance of collections for discovering diversity..

 

NHM scientist Dr Mark Carine and scientific associate Dr Norman Robson undertook the research with colleagues from the Earthwatch Institute; University of Oxford; Royal Botanic Garden Edinburgh; Royal Botanic Gardens Kew; and the Missouri Botanical Garden, looking at the time between the acquistion of the specimens and publication of the plant's description in the Kew Bulletin.

 

A small number of specimens are recognised as being new species when they are first collected.  However, the scientists found that many others are identified as a result of comparisons and revisions of major groups of plants that take place more gradually within the large collections, sometimes taking several years.  In this process, many specimens from different herbaria will be compared: the comparison and analysis gives rise to new understanding of diversity and the identification and description of new species.

 

This work emphasises the importance of collections, such as those of the NHM and its partners, in improving understanding of plant diversity. These collections exchange many specimens each year, and make thousands of loans to enable scientists to work on plant diversity around the world.  They are increasingly developing digital resources that should give wider and more rapid access to images of plant specimens, supporting this area of science.

 

 

Bebber, DP, Carine, MA, Wood, JRI, Wortley, AH, Harris, DJ, Prance, GT, Davids, G, Paige, J, Pennington, TD, Robson, NKB and Scotland, RW (2010) Herbaria are a major frontier for species discovery.  PNAS.  December 6, 2010

0

Bumblebee conservation

Posted by John Jackson Dec 22, 2010

Dr Paul Williams from the Museum's Department of Entomology has taken on the role of chair of the Bumblebee specialist group of the Species Survival Commission (SSC), an initiative of the International Union for the Conservation of Nature (IUCN). The SSC is a science-based network of volunteer experts from almost every country of the world, working to provide information and advice on biodiversity conservation, the value of species and their role in ecosystem health,  function and services, and their support for human livelihoods.

 

Paul is a world expert on bumblebee taxonomy and identification, producing scientific research papers and public resources.  He is also a Trustee of the UK Bumblebee Conservation Trust.

0

Bryozoans are colonial invertebrates, commonly found attached to hard surfaces from the shallow subtidal zone to the deep sea. Bryozoan colonies increase in size by the budding of the numerous individuals (zooids) that make up the colony.

 

A collaborative team, including Professor Beth Okamura, Dr Tanya Knowles and Dr Paul Taylor from the NHM, explored how the size of zooids in fossil bryozoans varied as temperature changed.  This enabled them to use bryozoans to deduce the annual ranges of temperature during the Early Pliocene (around 4 million to 5.5 million years ago) in the Weddell Sea off the coast of  Antarctica.

 

Their results show that during this period the climate was warmer than that of the present day, suggesting an ice-free environment in that part of Antarctica.

 

The research shows the value of fossil bryozoans from shallow seas as a tool for reconstructing seasonal variation in climate in near-polar latitudes in past periods of the Earth's history.  This helps to understand how climates have changed naturally in the past - knowledge that in turn enables present-day changes in climate to be understood and predicted.

 

Clark, N., Williams, M., Okamura, B., Smellie, J., Nelson, A., Knowles, T., Taylor, P., Leng, M., Zalasiewicz, J. & Hayward, A. 2010. Early Pliocene Weddell Sea seasonality determined from bryozoans. Stratigraphy 7: 199-206.

0

Dr Michael Dixon, Director of the Natural History Museum (NHM), and Dr Ahmed Djoghlaf, Executive Secretary of the Convention on Biological Diversity (CBD), have just signed an agreement on the NHM joining the CBD's Consortium of Scientific Partners on Biodiversity.

 

The CBD is the focus in the UN system for the conservation and sustainable use of biodiversity, first agreed in 1992.  It has made a major difference to the way in which biodiversity is monitored, conserved and used in many parts of the world since then. 192 countries are parties to the CBD, and they held their tenth conference in Nagoya, Japan at the end of 2010.

 

This meeting reviewed progress in reaching the 2010 targets for conserving biodiversity, but it is clear that there is no slowing of the rate of biodiversity loss on a global scale.  Biodiversity is not only valuable in its own right, but provides essential services in terms of food, environment, medicine and other human needs, so substantial long-term loss is of major concern.

 

There is an increasing sense of urgency to address threats to biodiversity and the Nagoya meeting secured agreement on a new strategy looking foward to 2020, and on a number of other issues.   One of these was a new protocol on Access and Benefit Sharing of genetic resources, which will be important in influencing the development and collaborative use of museum collections such as the NHM.

 

The Consortium is a group of major biodiversity institutions that are committed to collaborate with the CBD.  Its purpose is to mobilise "the expertise and experience of these institutions in order to  implement education and training activities to support developing  countries that are building scientific, technical and policy skills in  the area of biodiversity"

 

Current members are

 

  • The Smithsonian National Museum of Natural History
  • The Muséum National d’Histoire Naturelle de France
  • The Royal Botanic Gardens Kew
  • The German Federal Agency for Nature Conservation
  • The Royal Belgian Institute of Natural Sciences
  • The National Commission for Wildlife Conservation and Development of the Kingdom of Saudi Arabia
  • The Mexican Secretariat of Environment and Natural Resources
  • The Higashiyama Botanical Gardens, City of Nagoya
  • Royal Botanical Gardens of Edinburgh
  • The National Institute of Biological Resources
  • The Missouri Botanical Gardens
  • Joint Nature Conservation Committee
  • The Natural History Museum of the United Kingdom
  • The Secretariat of the Convention on Biological Diversity
1 ... 18 19 20 21 22 Previous Next