20-162
NATURAL ENEMIES OF APHIDS AND THEIR POTENTIAL POWER IN TÜRKİYE
Z. Yoldas, C. Üncüler
Ege University, Faculty of Agriculture, Department of Plant Protection, 35100 Bornova, Izmir, Türkiye
1 Adnan Menderes University, 09100, Aydın, Türkiye
Aphids are one of the most destructive agricultural pests and can cause significant damages direct or indirect ways for plants. However, the family of Aphididae (Homoptera) has also several natural enemies. Many studies have been done about the natural enemies of aphids by various entomologists in Türkiye. In the present study, all the previous records concerning the predators, parasitoids and diseases of aphids were compiled and listed.
In Türkiye, 162 predatory insects inColeoptera, Diptera, Neuroptera and Heteroptera orders, 38 parasitoids in Aphididae, Aplysiidae, Encyrtidae, Pteromalidae families (Hymenoptera) and an entomopathogen fungus were determined. In addition to the mentioned natural enemies, 10 hyperparasite species and 19 parasite of the predators were found out. In the remaining part of the article, certain knowledge on the potentiality of these beneficial insects was discussed.

20-163
APHID-ATTACKING APHELINID SPECIES IN JAPAN: TAXONOMY, BIOLOGY AND BEHAVIOR.
H. Takada
Laboratory of Entomology, Faculty of Agriculture, Kyoto Prefectural University, Kyoto, Japan
Two species of Aphelinus have hitherto been recorded from Japan. In the present study 13 other species are added to the fauna. These species are outlined and some information on their biology, and oviposition and host-feeding behavior is given. Discussion on the generic taxonomy will also made.

20-164
SUCCESSFUL BIOLOGICAL CONTROL OF Parabemisia myricae (KUWANA) BY Eretmocerus debachi ROSE ET ROSEN IN THE EAST MEDITERRANEAN REGION-OF-TURKEY
C. Şengonca1, N. Uyyun2, U. Kersting3, M.R. Uluçoğlu4
1 Inst. of Phytopathology, University of Bonn, FRG and 2 Dept. of Plant Protection, University of Çukurova, Turkey
The White Fly, Parabemisia myricae (Kuwana) (Hom., Aleyrodidae), which had been imported in the mid-eighties, is a serious pest of citrus because of direct feeding damage as well as for its role as vector of citrus chlorotic dwarf (CCD) a severe disease in the east Mediterranean region of Turkey. To control this pest biologically, the aphelinid Eretmocerus debachi Rose et Rosen (Hym., Aphelinidae) was imported and mass released in the entire citrus-growing area. Within only three years the whitefly population was brought down to almost zero level. Even to smallest increases in pest populations, the parasitoid reacted with increasing parasitization. The high efficiency of E. debachi was also proved in laboratory experiments. The developmental time ranges from 12-28 days and the longevity lasted 2.1-3.7 days. Thus, E. debachi completed 13-14 generations a year while P. myricae passes only 7-8. E. debachi reproduced thelytokously, parasitizing about 53 individuals of different P. myricae- instars. A high mortality of P. myricae occurred due to host-feeding. The total mortality (parasitization and host-feeding) reached about 97% for P. myricae-second instar nymphs. The biological control of P. myricae by E. debachi was a complete success and is one of few outstanding examples in biological control of whitefly species.

20-165
NATURAL ENEMIES OF WHITEFLIES IN THE DOMINICAN REPUBLIC - THEIR PROSPECTS FOR BIOCONTROL IN TOMATO AND ORNAMENTAL CROPS
C.A. Sierra, M. Ortiz, J.B. Núñez, A. Schuiz2, & P.F. Benoit
Proyecto 'Mosca Blanca', Instituto Superior de Agricultura (ISA), Apartado 166, Santiago de los Caballeros, Dominican Republic; 2 Fachhochschule Weihenstephan, Freising, Germany
The Dominican mainly processing-tomato production in the irrigated lowlands has been severely threaten since 1988/89 by excessively and insecticide-resistant populations of Bemisia tabaci and since 1991 by the transmission of geminiviruses as the tomato yellow leaf curl virus (TYLCV-Ia). In order to enhance biocontrol as a component of IPM of the Bemisia tabaci complex and also Trieleurodes vaporariorum (in vegetables incl. fresh market tomatoes in mountain valleys), a nationwide survey on existing whitefly species (c18 spp.) and associated enemies was carried (1995-96). Their potential for biocontrol mainly during the crop-free period is discussed. Coccinellids (incl. Delphastus, spp.), chrysopids and other predators were recorded, but only mid bugs (Cyrtopeltis tenuis, C. modesta) occur in relative high densities after the critical initial weeks. Although natural parasitism is relatively low in existing tomato-growing systems, a diversity of parasitic aphidines incl. Encarsia transvena, Encarsia sp. (pavella group, uniparental?), En. pergandii, En. formosa, En. mertorieae, En. topophila (En. sclopetaria and Eretmocerus sp. nr. californicus have been reared from weeds and crops. A. luscipennis (Hym.: Platygasteridae) a parasitoid of T. vaporariorum shows high parasitism levels (s90%) in unsprayed plants in mountain valleys. Endemic species have been compared in bioassays and field cages to biotypes imported from MBCC, Mission, Texas, in order to start mass rearing and liberation of the most promising parasitoids. Entomopathogenic fungi (Hyphomycetes-Moniales) Paecilomyces fumoso-roseus and Verticillium lecanii (s500 and 400-1500 m.a.s.i. respectively) occur associated to T. vaporariorum. Commercial myconnnecticides as well as selected endemic and introduced strains of different fungi species (incl. Beauveria bassiana, Entomophthora virulans) were compared on tomato and Gerbera sp. plants.