HOW TO RECOVER BENEFICIAL PARASITOIDS OF THE ALFALFA SEED CHALCID, *BRUCHOPHAGUS RODDI* GUSS. (HYMENOPTERA: EURYTOPIDAE) FROM THE "GARBAGE"? 
G. Szegz. Cs. Erdélyi, Gy. Makránzyc, A. Bus
Plant Protection Institute, Hungarian Academy of Sciences, Budapest, Hungary - 1 National Inspectorate for Seed and Vegetative Reproduction Material, Budapest, Hungary

The seed-boring larva of the alfalfa seed chalcid, *Bruchophagus roddi* Gussakovsky (Hymenoptera: Eurytopidae) can cause damage up to 80% in the production of alfalfa sowing-seed. The larvae of this pest host a number of beneficial parasitoids, which are in the stage of diapausing larva at the time of commercial seed-harvest. At commercial seed cleaning, seeds with a diapausing parasitoid larva inside go to the chaff, and they will be eliminated with the chaff. We suggest recycling beneficial parasitoids from this natural reservoir in order to use them as biocontrol agents against the alfalfa seed chalcid. A simple method to re-gain the beneficial parasitoids from the chaff, to store them until use, and to let them emerge is proposed. Possibilities to separate beneficial parasitoids from their non-parasitized hosts are discussed.

MATING STRUCTURE AND SEX RATIO IN A SEED EATER BRACONID WASP *ALLORHOGAS DISPITUS* AND IN ITS PARASITOID *EURYTOPMA SP* (EURYTOPIDAE)
M. V. Madóczý1,*, M. C. P. Pimentel3, M. P. Silvairinha1 & T.M. Lewinsohn1

1 Lab. Interações Insetos-Plantas, Depto Zoologia, Universidade Estadual de Campinas, Campinas, SP, Brasil. 2 Pós Graduação em Ecologia, Botasista CAPES.

2 Lab. Ecologia de Insetos, Depto Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil

Larvae of *Allorrhogas dispitus* feed on developing seeds of *Phthecellium tumtum* (Leguminosae) an abundant and widely distributed shrub in the coastal scrub (restinga) of Barra de Maricá, Maricá County, Rio de Janeiro State, Brasil. These larvae can be parasitized by the solitary parasitoid *Eurytopma* sp. In order to describe the mating structure and the sex ratio of both species, 551 fruits from 13 plants were collected from June to August 1996, and observed daily for adult emergence. In all 1751 braconids and 3951 eurytoids were obtained. In both species males tend to emerge earlier than females. *A. dispitus* aggregated in groups of up to eight males waiting for each emerging female showing no aggressive behavior. *Eurytopma* sp males also wait for emerging females but males are very aggressive and only one wins the contest. In both species only mated females disperse. These observations are consistent with the Local Mate Competition hypothesis (Hamilton, 1967; Science 156: 477-481) from which we would expect a female biased sex ratio. However, summing all insects that emerged throughout the whole season the real sex ratio is 1:1 both for the braconid and the eurytid. This can be explained by the observed male dispersal from the natal patch, which would put this case into the intermediate mating structure category, especially in this case where patches are abundant and widely distributed.

HOST-PARASITOID RELATIONSHIP IN ENTOMOGENOUS GALLS IN *PAULLINIA CARPOPODEA* (SAPINDACEAE) IN THE SOUTHEAST BRAZIL
M. M. Sávareda, M. A. P. Azevedo & R. F. Monteiro
Laboratório de Ecologia de Insetos, Departamento de Ecologia, Inst. Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil

Very little is known about the ecology of galls and their associated insects in the neotropical regions. In an Atlantic Forest ecosystem in the Southeast Brazil we found 11 different types of entomogenous galls in *Paulinia carpocarpa*. Nothing has been recorded in the literature about these or any other galls from this plant species. Our objective was to describe the composition, dynamics and structure of these galls and their associated insects. Twenty plant individuals were twice a month checked for galls. Some of these galls were collected for morphological analyses and to obtain the insects in the laboratory. Most of the galls were found throughout the year; possibly due to the constant production of new leaves, which was observed.

Ten types of galls are induced by Cecidomyiidae (Diptera) from which we obtained 28 wasp species belonging to 7 different families: Eulophidae (64%), Eurytopidae (18%), Myrmaridae, Trichogrammatidae, Pteromalidae, Encyrtidae and Scelionidae (18% all together). The Eulophidae predominance in the gall parasitoid guild has been observed in other studies in this region, and it is quite different from data available for the neartic region. If the parasitoid species represented by a single individual were excluded, it would be found that 70% (12 species) of them occur in only one type of gall, that is, they are probably specialists in this system. From only one type of gall, there were 54% of the insect species. This high diversity can be explained by its high abundance and complexity caused by phytophagous agents acting as gall modifiers (endogafl). Financial Support: CNPq and Fundação O Bolsicano de Proteção à Natureza.

MUSCA DOMESTICA L. 1758 AND ITS PARASITIDS IN SOUTHEASTERN BRAZIL
M.A.F. Almeida1, A. P. Prado1
1 Instituto de Biologia, Departamento de Parasitologia, Universidade Estadual de Campinas, Campinas, Brazil.

A survey was conducted to verify sazonal abundance of *Musca domestica* L. and its parasitoids, in microhabitats of a dairy cattle farm. *Spalangia cameroni* Perkins, *S. endius* Walker, *S. nigroaenea* Curtis, *S. gemina* Boucek and two species of *Muscidifurax* (Hymenoptera: Pteromalidae) were found associated with *M. domestica*. Larvae of *Alochara puberula* (Klug) (Coleoptera: Staphylinidae) also emerged from *M. domestica* puparia and these larvae were kept in conditions of laboratory to wait the emergence of adults. *A. puberula*, *S. cameroni* and *S. endius* were the most important species parasitizing *M. domestica*, although they showed different sazonality. The population of *M. domestica* was influenced by temperature and precipitation, but parasitoid species were influenced by the flies density, showing the possibility that could be a density-dependence relationship.

672