Notizie biologiche sul *Necremnus tidius* (Walker) (Hymenoptera: Eulophidae), ectoparassitoide di *Cosmopterix pulchrimella* Chambers (Lepidoptera: Cosmopterigidae)

Abstract – Biological data on *Necremnus tidius* (Walker) (Hymenoptera: Eulophidae), ectoparasitoid of *Cosmopterix pulchrimella* Chambers (Lepidoptera: Cosmopterigidae) are given. *Necremnus tidius* (Walker) was reared from larvae of *Cosmopterix pulchrimella* Chambers (Lepidoptera: Cosmopterigidae), on *Parietaria diffusa* M. & K. collected in Perugia. Preliminary notes on rearing and some biological traits of the parasitoid are given.

Key words: *Necremnus tidius*, rearing, biology, longevity.

INTRODUZIONE

La *Cosmopterix pulchrimella* (Lepidoptera: Cosmopterigidae) è una specie a distribuzione oloartica che, a differenza di quanto riportato per il Nord America dove si rinviene anche su piante del genere *Pilea* (Urticaceae), in Europa è infestata soltanto su *Parietaria diffusa* M. & K. e *Parietaria lusitanica* L. (MARIANI, 1935). Queste piante perenni sono estremamente diffuse e molto spesso infestate dal filaminatore, il quale costituisce un ospite alternativo per numerosi parassitoidi come segnalato in diversi lavori (MINEO ET AL., 1997a, 1997b). Da materiale proveniente da Perugia è sbarfallato un eulofide successivamente identificato come *Necremnus tidius* (Walker) anche in seguito a confronto con esemplari avuti cortesemente in

MATERIALI E METODI

Gli allevamenti di *C. pulchrimella* sono stati effettuati, se non differentemente indicato, alla temperatura costante di 25±1°C, RH di 50±10% e fotoperiodo di 12L:12N su *P. diffusa*. Piante alte circa 15 cm sono state prelevate in campo, trapiantate in vasi di 10 cm di diametro e mantenute in isolatori in serre di vetro. Dopo un periodo di quarantena, esse sono state esposte a circa 16 adulti del lepidottero, utilizzando isolatori di plastica cilindrici del diametro di 10,5 cm, alti 19 cm e chiusi con tulle nella parte apicale. Dopo 24 ore dall’inizio della ovideposizione, nell’unità di allevamento è stata sostituita la pianta nonché gli adulti morti. Dopo 14 giorni dalla ovideposizione, sono state ottenute larve mature del lepidottero, utilizzate per l’allevamento del parassitoido.

L’allevamento del parassitoido è iniziato utilizzando gli individui sfarfallati da materiale prelevato a Perugia nell’aprile 2002.

Piante con larve mature del fitofago sono state esposte a tre coppie del parassitoido per 24 ore; impiegando femmine sfarfallate da almeno 72 ore, alimentate con miele e quindi esposte ad alcune larve del fitofago per l’host-feeding.

La lunghezza del ciclo del fitofago (nuovo-adulto) è stata valutata alle temperature di 15° e 25±1°C. *N. tidius* è stato riprodotto a 2 differenti temperature (15°C, 25±1°C). Dopo 6 giorni dalla deposizione per la prova a 25°C e 15 giorni per la prova a 15°C, le foglie con mine sono state recise, evitando di danneggiare eccessivamente la pianta e messe in barattoli retinati della dimensione di 8,5 cm di h x 6,5 cm di diametro. Giornalmente si è proceduto al conteggio, al isolamento e alla suddivisione per sesso dei nuovi nati. Gli adulti così ottenuti sono stati utilizzati per prove di longevità.

Gli adulti ottenuti dalle prove succitate sono stati tenuti alle due temperature di allevamento in presenza di alimento (gocce di miele) in provette di vetro (5,5 x 1,2 cm). Per ogni prova sono stati isolati 30 adulti neosfarfallati.

I dati sono stati analizzati con il test ANOVA, trasformati se necessario, ma presentati senza trasformazione. In caso di mancanza di distribuzione normale o di varianza non omo- genea è stato utilizzato il test non parametrico di Kruskal – Wallis. Tutti i dati sono stati analizzati utilizzando il programma Statgraphics plus.
Gli allevamenti effettuati hanno consentito di ottenere una produzione giornaliera di *C. pulchrimella* e del parassitoido. La pianta ospite è risultata molto resistente alle condizioni sperimentali e utilizzabile per diversi cicli. L'allevamento è semplificato anche dalla trasparenza delle foglie attaccate dal filliminatore che rende la raccolta delle pupe del parassitoido molto agevole.

La lunghezza del ciclo del fitofago è risultata di 57,29±10 giorni (D.S.) a 15°C (n = 21) e di 24,04±2,3 giorni a 25°C (n = 303) (Fig. I). Le larve raggiungono la maturità (lo stadio utilizzato per la parassitizzazione) rispettivamente dopo 33 giorni (15°C) e 14 giorni (25°C).

Il ciclo uovo-adulto di *N. tidius* allevato alle stesse temperature utilizzate per l’ospite è risultato più breve (Fig. I) con una media di 41,8±0,1 giorni per il ciclo a 15°C (n= 122) e di 13,2±0,1 giorni a 25°C (n=127). L’analisi statistica (test Anova a due vie; P< 0,01 per la temperatura e P= 0,02 per il sesso) ha evidenziato una leggera protandria. La longevità degli adulti, è stata a 15°C di 96,6±30 giorni per le femmine e di 59,4±15,4 giorni.

Fig. I - Durata dello sviluppo di *C. pulchrimella* allevata su *P. diffusa* e di *N. tidius* su *C. pulchrimella* a differenti temperature; valori significativamente diversi sono contrassegnati con differenti lettere (Anova test P<0,05 lettere minuscole; Kruskal Wallis test P<0,05 lettere maiuscole) (media ± DS).
per i maschi; a 25°C di 44,2±22 giorni per le femmine e di 33,8±9,4 giorni per i maschi. L’analisi statistica (test Anova a due vie; P< 0,01 per la temperatura e P< 0,01 per il sesso) ha evidenziato la significatività delle differenze riscontrate tra i due sessi e tra le due temperature.

Il rapporto maschi/femmine della progenie allevata è risultato di 0,55 a 15°C e di 1,03 a 25°C.

Il *N. tidius* è risultato essere biparentale, solitario e sinovigenico. Come già segnalato per diversi eulofidi ectoparassitoidi (NICOLI, 1998; RIZZO, 1999; GRABENWEGER, 2003), presenta host-feeding distruttivo effettuato previa puncture con l’ovopositore. Le femmine depongono le uova all’interno delle mine dopo aver punto l’ospite e aver innestato il veleno, ciò ne comporta la rapida paralisi e dopo pochi minuti, la morte. Tale comportamento è stato recentemente osservato anche in un’altra specie non segnalata in Italia, il *N. breviramulus* Gahan, dove il veleno ha mostrato la sua efficacia per un’ampia gamma di ospiti anche al di fuori di quelli abituali (COUDRON ET AL., 2000).

È peculiare il comportamento di alcune larve del parasitoido. Esse per completare lo sviluppo si spostano nelle mine fogliari nutrendosi a spese di più larve dell’ospite precedentemente uccise dalla femmina ovideponente.

CONCLUSIONI

Il sistema di allevamento messo a punto per il *N. tidius* si è dimostrato efficiente e di facile mantenimento. Esso si presta bene anche all’allevamento di altri eulofidi ectoparassitoidi polifaghi quali, ad esempio, il *Pnigalio soemius* (Walker) (BERNARDO, in prep.). La facilità di allevamento di *N. tidius* potrà consentire, in seguito, di approfondire vari aspetti bioetologici. La conoscenza della lunghezza del ciclo del fitofago alle diverse temperature testate, può semplificare la sincronizzazione del ciclo con quello del parassitoido.

La *C. pulchrirmella* rappresenta il primo lepidottero segnalato come ospite per *N. tidius*; alcuni tentativi di allevamento del parassitoido su *Phyllocnistis citrella* Stainton non hanno avuto successo. L’attività di host-feeding del parassitoido e quella connessa all’ovideposizione sembrerebbe avere un impatto non trascurabile, rispetto a quello dovuto allo sviluppo larvale, sulla popolazione dell’ospite. Ciò è stato evidenziato anche da altri autori per altri eulofidi (ASKW & SHAW, 1979; GRABENWEGER, 2003).

Ringraziamenti – Si ringrazia il British Museum di Londra per l’invio di esemplari di *N. tidius*.
BIBLIOGRAFIA

SCHRÄER, P. – 1994 – Analysis of the factors influencing the abundance of the cereal leaf beetle (Oulema sp., Coleoptera, Chrysomelidae). – Agrarökologie 12: 136 pgg.

Author for correspondence: Umberto Bernardo, Istituto CNR per la Protezione delle Piante – Sezione di Portici – Via Università, 133 – 80055 Portici (NA), Italia. E-mail: bernardo@ipp.cnr.it

Printed on December 29th 2003.