Skip navigation

The NaturePlus Forums will be offline from mid August 2018. The content has been saved and it will always be possible to see and refer to archived posts, but not to post new items. This decision has been made in light of technical problems with the forum, which cannot be fixed or upgraded.

We'd like to take this opportunity to thank everyone who has contributed to the very great success of the forums and to the community spirit there. We plan to create new community features and services in the future so please watch this space for developments in this area. In the meantime if you have any questions then please email:

Fossil enquiries: esid@nhm.ac.uk
Life Sciences & Mineralogy enquiries: bug@nhm.ac.uk
Commercial enquiries: ias1@nhm.ac.uk

Super-flies and parasites

2 Posts tagged with the myiasis tag
0

Hello Super-flies & Parasites fans!

 

This time we are departing from the familiar world of blood flukes and having a look at something new and exciting: Welcome to the ‘Forever Flies’series of blog posts. I’ve really enjoyed writing this bit as it’s totally new to me and I’m learning so much from our wonderful scientists in the Forensic Entomology group of the Parasites & Vectors division here at the Museum.

 

About forensic entomology


I think I mentioned forensic entomology way back in the first ever Super-flies and Parasites post. But to refresh our memories and delve a bit deeper here’s an explanation taken from the group’s website:

'Forensic entomology is the study of insects and other arthropods (ie spiders, mites) in a situation where a crime may have been committed. The insects recovered from a crime scene can provide vital information for the investigating team. The most common role for Museum forensic entomologists is establishing a minimum time since death in suspicious cases, by analysing the carrion insects on the body.'

 

Flies use the bodies of dead animals to grow and develop, fulfilling a vital nutrient recycling role in an ecosystem. They can turn one vertebrate body into thousands or millions of flies, which are then fed on by other animals - insects, frogs and birds for example. The rate at which they do this, going from eggs to larvae to pupa to adult fly, is pretty consistent.

 

Knowing enough about the species of flies we can exploit this information when they develop on corpses. By determining how long the insects have been feeding on the tissues of the corpse, we can determine the length of time elapsed since flies found the body; thereby providing crime scene investigators with a minimum post-mortem interval.

 

Some flies however don’t hang about and wait for death, they prefer feeding on live animal tissues, and can cause a horrible disease called myiasis, a major economic and animal welfare problem.


2014-10-16 Gross maggots with adult.jpg

Female Bluebottle blow fly, Calliphora vicina, and maggots feeding on a dead pig.

 

Dr Martin Hall and colleagues within the Museum and around the world work together on the taxonomy and biology of flies that develop as larvae on living or dead vertebrate animals. Their expertise and research greatly contributes to the control of a painful and damaging disease, myiasis, but also to the field of forensic entomology, helping CSIs determine crucial information from a crime scene.

 

So there you have it, some real life crime scene investigation stuff! These are the guys CSIs turn to for help! (Cue CSI theme song!)

 

The beauty of maggots lies in their mouthparts

 

I asked Martin for a little blurb to get the Forever Flies series rolling and he sent me some surprisingly beautiful photos of maggots! Here’s what he has to say about them:

To most people maggots are repulsive creatures; they all look much the same and have zero redeeming features.

 

2014-10-16 Gross maggots 1-1.jpg2014-10-16 Gross maggots 2.jpg

Maggots, thought of as repulsive creatures with zero redeeming features. Read on to see how they are transformed by confocal microscopy into beautiful works of art.


However, viewed under a microscope they become much more interesting, with a range of characters that can be used in discrimination, especially when you look at the business end of the maggot, its mouthparts!

 

It’s not so easy to ask a tiny 2mm long newly hatched maggot to 'open wide' to view the teeth, and traditionally we have been limited to viewing slide-mounted specimens by light microscopy. Scanning electron microscopy has its merits, but only for the external features. In normal light microscopy, imaging of these mouthpart structures is limited by problems of resolution, illumination and depth of field.


Lucilia sericata L1 - Light microscope high power.jpg

Greenbottle blowfly, Lucilia sericata light microscope high power image. With normal light microscopy the relationship of the sclerites of the cephaloskeleton (mouthparts) to each other is unclear.

 

At the Museum we have been using a laser confocal microscope for the first time to look inside these maggots to view the mouthparts, the so-called cephaloskeleton, in three dimensions. The mouthparts are crucial to the maggots in establishing themselves on their food source, be it a live animal or a decomposing corpse. The images produced by the confocal microscope rely on the autofluorescence of structures of the cephaloskeleton.


Lucilia sericata LI - Confocal microscope low power.jpg

Greenbottle blowfly, Lucilia sericata confocal microscope low power image - relationships are still unclear but, with the autofluorescence under laser light, the structures look so much more beautiful!

 

We were especially interested in the relationships of the small sclerites to each other and the so called 'hump', present in newly hatched larvae of Lucilia greenbottle blowflies but absent in Calliphora bluebottles.


Lucilia sericata L1 - Confocal microscope high powerWITH ARROW.jpg

Greenbottle blowfly, Lucilia sericata confocal microscope high power image: The structure relationships are becoming clearer (the 'hump' is arrowed) and this is finalised in the next image.

 

The 177 optical sections scanned by the confocal microscope enabled us to rotate and view this structure in three dimensions (see green false-coloured sclerite in image below) and see clearly for the first time how it relates to other structures.

 

In addition to their academic and practical value in identification, the images are also things of beauty in their own right and would not look out of place in an art gallery!


Lucilia sericata - Confocal high power - false colour sclerites named.jpg

Greenbottle blowfly, Lucilia sericata confocal microscope high power image and false colour sclerites. We have rotated the original to give three dimensionality. The red wavelength was selected, as this is the wavelength that gave most autofluorescence of the cephaloskeleton, to enable us to discard other structures and here false-colour has been added to show the different structures, including the 'hump' (in green) or epistomal sclerite.

 

The work was done at the Museum and involved Drs Andrzej Grzywacz (a visitor under the EC-funded SYNTHESIS project) and Krzysztof Szpila from the Nicolaus Copernicus University in Torun, Poland, collaborating with Tomasz Góral and Martin Hall. We used the Museum’s Nikon A1-Si Confocal Microscope.

 

For more information see the article published online in Parasitology Research on 19 September 2014.


By Dr Martin Hall

 

I hope you enjoyed the first 'Forever Flies' post. For more on flies head over to Erica McAlister's Diptera blog.

 

There will be more coming soon but just to let you know there may be a couple of weeks break whilst some important maintenance work is done to the site and my life

 

See you soon

0

Welcome to the Parasites and Vectors Division blog. Let me introduce our group and the superbugs and parasites we work on (WARNING NASTY IMAGES, strong stomachs required).

 

The world is full of amazing animals, but there are some that have a more sinister side. Our scientists and curators look at insects, arachnids and worms that live on or inside other animals, including people.

 

Blue bottle fly - Calliphora vicina - forensic entomology.jpgThe blue bottle fly, Calliphora vicina colonizes corpses and is used in forensic entomology to help crime scene investigators determine time of death.

 

I’ll be using this blog to write about what we do, why we study these complex organisms and how we collect data in the field and in our laboratories.

 

I’ll reveal more about the grisly creatures we study later, but for now here’s an introduction to the main players:

 

  • Flies can cause the horrible disease myiasis, but are also helping scientists to determine crucial information at crime scenes through forensic entomology.
  • Mosquitos have been called the world’s most dangerous animal, carrying diseases like malaria and viruses like dengue.
  • Ticks and mites (Acari) can cause huge damage to crops, and spread diseases such as Lyme disease and babesiosis.
  • Blood flukes are parasitic worms that cause schistosomiasis, a disease affecting over 200 million people worldwide. Museum scientists are studying these worms to help affected countries control schistosomiasis, a neglected tropical disease. More about this in my next post!
  • Flatworms can be parasitic monsters, but their amazing capacity for regenerative growth could inspire regenerative medicine techniques and anti-aging therapies in humans.

 

Myiasis .jpgMyiasis wounds on sheep in Hungary produced by the spotted flesh ply or screwworm fly (Photo credit Alexander Hall).

 

We use a range of DNA techniques, from mitogenomics to next generation sequencing to investigate, describe and understand parasitic worms. None of our work would be possible without the Museum’s extensive parasite and vector collections. Erica McAlister curates one of these, the diptera (true flies) collection, which you can read more about on her (very entertaining) blog.

 

schisto_venous_system_cattle.jpgDon't let size fool you; these tiny blood flukes living in the blood veins of animals cause a debilitating disease called Schistosomiasis.


That’s it for now but check back soon - I’ll be setting off to Tanzania next week in search of blood flukes and will surely have some stories to tell from the field!