Skip navigation

The NaturePlus Forums will be offline from mid August 2018. The content has been saved and it will always be possible to see and refer to archived posts, but not to post new items. This decision has been made in light of technical problems with the forum, which cannot be fixed or upgraded.

We'd like to take this opportunity to thank everyone who has contributed to the very great success of the forums and to the community spirit there. We plan to create new community features and services in the future so please watch this space for developments in this area. In the meantime if you have any questions then please email:

Fossil enquiries: esid@nhm.ac.uk
Life Sciences & Mineralogy enquiries: bug@nhm.ac.uk
Commercial enquiries: ias1@nhm.ac.uk

Previous Next

Science News

February 6, 2015
0

NHM EARTH SCIENCES SEMINAR

 

Unravelling global warming through soil mineralogy: A case study from a proglacial valley in the Swiss Alps

 

Dr Christian Mavris, Marie Curie Fellow (ES, NHM)

 

Tuesday 10th February - 4.00 pm

 

Earth Sciences Seminar Room (Basement, WEB 05, the previous Mineralogy Seminar Room)

 

Investigations in Alpine soils indicate that mineral weathering is much faster in ‘young’ soils (<1000 yr) than in ‘old’ soils (~10,000 yr). However, little is known about the initial stages of weathering and soil formation, i.e. during the first decades of soil genesis. Due to the continuous retreat of the Morteratsch glacier (Upper Engadine, Swiss Alps), the proglacial area offers a full time sequence from 0 to 150 yr old surfaces. The area is well documented regarding vegetation and soils.

 

The glacial till has an acidic character (granitoid parent rock). Mineralogical measurements were carried out using a broad range of analytical approaches, from XRD to wet chemistry to cathodoluminescence and Nomarski DIC microscopy. Specifically, cathodoluminescence and Nomarski DIC microscopy were used for the first time on minerals involved into an early pedogenic process.

 

This work clearly demonstrates that in cryic, ice-free environments, chemical weathering rates are high, leading to the formation and transformation of minerals. This clearly influences pedogenic processes to a remarkable extent – and thus, is linked to the settlement of life in previously deglaciated (and extreme) areas.

 

 

More information on attending seminars at http://www.nhm.ac.uk/research-curation/news-events/seminars/