Skip navigation

The NaturePlus Forums will be offline from mid August 2018. The content has been saved and it will always be possible to see and refer to archived posts, but not to post new items. This decision has been made in light of technical problems with the forum, which cannot be fixed or upgraded.

We'd like to take this opportunity to thank everyone who has contributed to the very great success of the forums and to the community spirit there. We plan to create new community features and services in the future so please watch this space for developments in this area. In the meantime if you have any questions then please email:

Fossil enquiries:
Life Sciences & Mineralogy enquiries:
Commercial enquiries:


The Museum runs an After Hours event called Crime Scene Live that in February featured micropalaeontology curator Steve Stukins.


Micropalaeontological evidence is increasingly being used to solve major crimes. Read on to find out about Steve’s involvement in Crime Scene Live, how our collections could help forensic studies and how our co-worker Haydon Bailey gathered some of the evidence that was key to convicting Soham murderer Ian Huntley.


Botanical or microfossil evidence?


The following image is of modern pollen, so could be described as botanical rather than micropalaeontological evidence.

A variety of modern pollen types similar to the ones investigated at the Crime Scene Live event.


As I mentioned in my post What is micropalaeontology?, distinguishing when something is old enough to become a fossil is difficult, particularly when some modern species are present in the fossil record. The Museum's microfossil collections contain modern species, particularly our recently acquired modern pollen and spores collection, and this collection has enormous potential as a reference for forensic investigations.


What can microfossil evidence tell us?


Because organisms that produce microfossils are present in a wide range of modern and ancient environments and can be recovered from very small samples, they can provide a lot of useful information. Mud or sand recovered from boots or clothing can show where the wearer has been and even the pollen content of cocaine can provide evidence of its origin or where it was mixed.

A scanning electron microscope image of British chalk showing nanofossils.


These details can relate a suspect to a crime scene, relate items to a suspect/victim or crime scene and prove/disprove alibis. Evidence can also show cause of death, for example, diatoms or freshwater algae present in bone marrow can indicate drowning.


Microfossil evidence helps solve the Soham murders


Haydon Bailey, who is working temporarily at the Museum on a project studying our former BP Microfossil Collection, provided some key evidence that convicted Ian Huntley of the Soham murders.


Haydon identified chalk nanofossils on and inside Huntley’s car that were common to the track leading up to the site 30 miles from Soham where the bodies had been dumped. For details about all the scientific evidence used, this article on the Science of the Soham murders is an interesting read.

Members of the public participating in Crime Scene Live activities.


Senior Micropalaeontology Curator Steve Stukins writes about Crime Scene Live at the Museum:

"This special public event gives the audience a chance to become a crime scene investigator for the evening using techniques employed by scientists here at the Museum. People are often surprised that the Museum is involved in forensic work, especially using entomology (insects), botany (plants) and anthropology (analysis of human remains). Crime Scene Live uses all of these disciplines and forms them into an engaging scenario for the visitors to get involved in.


Palynology, in most cases pollen, is used quite often in forensics. As pollen is extremely small, abundant and diverse in many environments it can be used to help determine the location of a crime and whether a victim/perpetrator has been in a particular place by understanding the specific pollen signature of the plants in an area.


Our jobs as forensic detectives in the Crime Scene Live Event were to determine where a smuggler had been killed, for how long he had been dead and the legitimacy of the protected animals he was thought to be smuggling. I’ll be giving away no more secrets about the evening, other to say that it was a great pleasure to be involved in a thoroughly enjoyable event and the feedback from the visitors was superb."


So if you fancy a bit of murder/mystery then why not come and help micropalaeontology curator Steve Stukins solve the Case of the Murdered Smuggler on 1 May or in October. Details of other Crime Scene Live events scheduled for this year can be found here.


Last month we welcomed our new student Marina Rillo, who is studying for a PhD on the evolution of planktonic foraminifera. The collection she is studying is very relevant to climate and oceanic studies and was compiled by the inspiring Henry Buckley, a curator in the former Mineralogy Department.


This post outlines how the collection was made, Marina's project and why the study of planktonic foraminifera and our collections are very relevant.


What are planktonic foraminifera?


Foraminifera are a class of protists (single celled organisms) that are characterised by granular ectoplasm. They are almost exclusively marine but also occur in freshwater and brackish enviroments.


Buckley_montage copy.jpg

The species Globorotalia (Clavatorella) oveyi (left) was originally described by Henry Buckley in 1973 and named after one of my curatorial predecessors, Cameron D. Ovey.


The name is derived from the term foramen or opening as each shell or test has one or many openings. All planktonic foraminiferal tests are composed of calcium carbonate, but benthic varieties can have shells made of agglutinated sediment and others are naked, ie composed completely of organic material.


The inspiring Henry Buckley


Henry Buckley was a curator in the Museum's Mineralogy Department for much of his life and died in 2002 shortly after his retirement. His curatorial work focused on the Ocean Bottom Deposits (OBD) Collection, and he developed a research interest in the taxonomy of planktonic foraminifera.



Part of the 1999 Mineralogy Department photo displayed in the Mineralogy corridor beneath Waterhouse Way, known to staff as the 'Miner-alley'. Henry Buckley is the smiling character wearing a tie in the middle on the back row.


The OBD Collection consists of samples from some 40,000 locations worldwide and is the most comprehensive British collection of seabed samples and cores, with all the world's oceans represented. The Sir John Murray Collection, which includes the HMS Challenger 1872-76 sea-bed samples, was given to the Museum by the Murray family in 1921 following his death in 1914 and forms the most significant part of the collection.



Slide from the Henry (Alexander) Buckley collection, where he formed his initials from specimens of Globigerinoides ruber (Image by Giancarlo Manna).


Despite the fact that he was actively discouraged by his managers in the Museum from carrying out work as a micropalaeontologist, Buckley amassed an amazing collection of 1,500 slides of individual species of planktonic foraminifera that he extracted from over 260 samples from the OBD Collection.

He published relatively little on the planktonic foraminifera but was a pioneer of scanning electron microscopy, leaving a collection of over 10,000 scanning electron micrographs of planktonic foraminifera with the collection. He was also one of the first to publish on the relationship of seawater to the composition of foraminiferal tests.

  • Shackleton, N J, Wiseman, J D H, Buckley H A (1973) Non-equilibrium isotopic fractionation between seawater and planktonic foraminiferal tests. Nature 242, 177-179. doi:10.1038/242177a0


Why planktonic foraminifera collections are relevant


Because planktonic foraminifera secrete calcium carbonate directly from the sea water in which they live, their isotopic composition can give an indication of the isotopic composition of the oceans at the time. The ratio of oxygen isotopes 16O to 18O in sea water is a very good indication of past climate. A higher abundance of 18O in calcite is indicative of colder water temperatures, since the lighter isotopes are preferentially stored in ice.


Recent high profile publications have highlighted the use of planktonic foraminifera in studies providing evidence that records of carbon dioxide in the atmosphere millions of years ago support current predictions on climate change.



Ice age South Kensington?


From observations of the modern day distribution of planktonic foraminifera, we know that some species prefer to live in warmer waters while others prefer more polar settings. The situation is of course far more complicated than these simple explanations suggest and a variety of different factors can affect their distribition and evolution through geological time.


The Buckley and OBD collections contain vast numbers of planktonic foraminifera from ocean basins around the world. They are therefore a very valuable tool for studying the effects of global change on recent foraminifera, as well as the factors that drive evolution in general.



Marina Rillo, who is studying for a PhD on the evolution of planktonic foraminifera.


Marina is a biologist interested in understanding what generates and shapes the amazing diversity of life. She completed her degree at the University of Sao Paulo, Brazil and a masters in Evolutionary Biology in a joint programme between the University of Groningen and the University of Montpellier. Marina says:


"The Buckley collection will give us many insights on evolutionary processes, because it reveals not only foraminiferal diversity by number of species, but also the great morphological variety within each species"


She will be based at the Museum for the first six months of her project and will be supervised by myself and Prof Andy Purvis in Life Sciences. The remainder of her PhD will be spent at the University of Southampton with her main supervisor Dr Tom Ezard.


In the last month we have heard that David King is also joining us to study for a PhD via the London Doctoral Training Programme. David will also be studying the evolution of planktonic foraminifera and will jointly supervised by myself, Prof. Bridget Wade at University College London and Mark Leckie (UMass, USA). Look out for future posts highlighting David's project and for updates on Marina's project. I'm sure this news would have made Henry Buckley smile!

Giles Miller

Giles Miller

Member since: Apr 21, 2010

This is Giles Miller's Curator of Micropalaeontology blog. I make the Museum micropalaeontology collections available to visitors from all over the world, publish articles on the collections, give public talks and occasionally make collections myself.

View Giles Miller's profile