Work Package 1

The New Sources of Cobalt - Characterization of new ore types and ores for new types of processing

Lead Dr P. F. Schofield, NHM

The aim of this work package is to provide detailed mineralogical, chemical and atomistic-scale characterization (Natural History Museum, Diamond Light Source, Loughborough University and Southampton University) of natural Co-bearing concentrations that represent potential new sources of the element. This comprehensive characterization will underpin the proposed research of WPs 2-4 that are examining novel techniques for Co extraction, enrichment and processing in order to provide tailored materials as required by the end users of this critical E-tech element.

Cobalt from four contrasting recoverable reserves will be studied:

- **Cobalt-rich laterites** that currently provide 20% of the world’s cobalt despite the fact that most of the hydrometallurgical technologies are optimized for Ni extraction leaving much of the Co unrecovered
- **Seafloor Fe-Mn crusts** and nodules which represent a huge potential future and strategic resource of Cobalt
- **Reduced sediment-hosted** Co ores. The Central African Copperbelt, (Zambia/DRC) is the world’s largest cobalt producing region, yielding 57% of world production. The Kupferschiefer (central/northern Europe) is currently a resource for metals such as Cu, Au, and Ag but the viable Co remains unrecovered
- **Chalcogenide** mineralogy of Bou Azzer, Morocco, is the only mixed sulfide-arsenide deposit in which cobalt is the primary target metal. Bou Azzer provides 8% of the world’s Co, which is recovered using intensive pyrometallurgical techniques.