We challenge the way people think about the natural world - its past, present and future.

Our 150 million year-old Stegosaurus, named Sophie, went on display in December 2014 after a year of study by our researchers. Their data are being used in a series of scientific studies, the first of which uses innovative 3D modeling techniques to reveal the dinosaur’s body mass. The Museum is grateful to the generous donors who made this iconic acquisition possible.
It has been another year of great achievement for the Natural History Museum. More than five million visitors have enjoyed the permanent galleries and special exhibitions that ranged from Britain: One Million Years of the Human Story to Sensational Butterflies.

The 50th anniversary of the Wildlife Photographer of the Year competition was a highlight. It was a great honour to join Sir David Attenborough to present awards to the winners in the adult and junior categories. I always look forward to this annual exhibition of more than a hundred striking images; ranging from animal portraits to landscapes and photojournalists’ portfolios to the works of children under 10 years of age. Each year I never fail to be amazed by the incredible talent on display.

Scientific research is at the heart of the Natural History Museum. The unrivalled collection of more than 80 million specimens from the natural world and the expertise of museum scientists make it possible to address some of the great questions facing us all, such as how natural resources can be used more sustainably, how some diseases might be eradicated and how we ensure the security of future food supplies. I look forward to seeing more of this research in new exhibitions emerging as part of the Museum’s new long-term strategy, announced this year.

There is an ever growing awareness that we are all dependent on natural resources: the Museum challenges the way we all think about the natural world, its past, present and future, and in doing so has never been more relevant or necessary.

Catherine
INTRODUCTION

What is the purpose of a museum of natural history in the 21st century? That is a question we asked ourselves during 2014 when we reset our mission and strategy.

Our fundamental purpose today is as it has always been – to care for, develop and make accessible the vast collections of natural history specimens accumulated over several centuries of exploration and scientific investigation.

But there is more. The Natural History Museum today is a major destination for international tourism, generating significant economic benefit for London and the UK. It is a national resource for public engagement and learning, delivering cultural value and raising awareness of the natural world. It is a global centre for scientific research, supporting scientific breakthroughs of great importance to humanity.

At the heart of everything we do are the collections themselves, of greater value than ever now that we are opening up their riches to digital access. Data-driven science has exciting potential and the Museum is playing a pioneering role.

With our new strategy firmly in place, we are a more focused organisation that is better equipped to respond to emerging needs and opportunities. The Natural History Museum has a compelling vision for the future.

Lord Green of Hurstpierpoint
Chair of the Trustees

The Trustees of the Natural History Museum are:

Chair - Lord Green of Hurstpierpoint
Professor Sir Ray Anderson FRS FMedSci
Daniel Alexander QC
Sir John Beddington CMG FRS
Louise Charlton
Professor David Drewery
Professor Christopher Gillagan
Professor Sir John Holman
Dr Derek Langslow CBE
Anand Mahindra*
Hilary Newsom*
Sir David Omand GCB
Simon Patterson*
Professor Stephen Sparks CBE FRS*
Dr Kim L Winser OBE

*Retired during the year.
*Joined during the year.
April

Sensational Butterflies (01) opened for another successful year, delighting family audiences with the beauty of butterflies and their fascinating life cycles.

Complex cardiovascular systems evolved as early as 520 million years ago. This discovery was made when a team, including Museum researchers, examined an exceptionally well-preserved fossil arthropod (the group of animals that includes insects, spiders, lobsters, and millipedes). The fossil was X-rayed at our Imaging and Analysis Centre to create a detailed picture of the animal’s blood vessels.

Museum scientists have named the 200th caecilian species, Ichthyophis multicolor, a landmark in our understanding of this enigmatic group of amphibians. Caecilians have unusual properties, such as a sensitive tentacle that may have evolved out of unused components of the eye, and they could harbour useful biomedical products.

May

The Museum celebrated a transformational donation of £5 million from The Hintze Family Charitable Foundation. The generous support of the Foundation will fund ambitious plans for the future of the galleries and provide vital investment in our pioneering research. The Museum honoured this major investment in its future by renaming its most prominent public gallery Hintze Hall. Pictured (02): Sir Michael Hintze.

Mammals: Ice Age Giants took visitors on a journey from the time when mammoths roamed the land to today’s research into the causes of mammoth extinction and ways to protect their modern relative, the elephant. The star of the show was Lyuba, a baby woolly mammoth discovered in Siberia in May 2007.

In a study published in Molecular Biology and Evolution, a team, including Museum researchers, has revealed the relationships between major groups of weevils, many of which are crop pests. The researchers used a newly-developed genomic technique for fast-track assessment of biodiversity.

June

University people from across the UK came to London for Universities Week 2014, which the Museum hosted. Cutting-edge scientific research, including our own work to tackle some of the world’s most pressing challenges, was showcased in a series of events.

We celebrated the world’s extraordinary diversity of insects in National Insect Week: a festival of events organised by the Museum and the Royal Entomological Society.

July

Our annual Bat Festival, a partnership with the Bat Conservation Trust and the London Bat Group, took place over a weekend in the Wildlife Garden and Darwin Centre. The Museum holds an important collection of 30,000 bat specimens, covering around 95 per cent of species worldwide.

Enjoying the natural world at Big Nature Day (03), our annual fair and celebration of UK natural history.

August

Nocturnal Creatures at the Natural History Museum at Tring explored the fascinating ways in which animals have adapted to living in the dark.

Dinosaur fossils discovered in Venezuela have been identified as a new species by an international team, including Museum researchers. It is the first dinosaur to be found in northern South America – the region was previously thought to have been uninhabited by dinosaurs. The find contained fossils of at least four individuals, revealing an early example of social behaviour in dinosaurs.

Museum scientists were part of a large team analysing space dust collected by the Stardust spacecraft, the results of which were published in Science. After long and painstaking analysis, involving 30,000 members of the public, seven grains have been identified as originating outside our solar system, providing the first evidence of the origins and evolution of interstellar dust.

September

The annual Science Uncovered event was an opportunity for the public to meet our scientists and visit rarely seen parts of the collections. More than 300 researchers from across the Museum and other leading research organisations took part.

Museum scientists were part of a team that has discovered why bloodworm venom causes a reaction similar to that of a bee sting. The team’s findings could be helpful in healthcare research – other venoms have been used to create painkillers and a treatment for diabetes.
October

Wildlife Photographer of the Year has been showcasing the world’s finest natural history photography for 50 years. This picture (04) of a Siberian jay was taken by Edwin Sahlin, one of the finalists in the ‘16 to 17 Years’ category.

The ice Pipit (05) was once again a popular winter fixture. 2014 was its tenth year and the sponsors were Sony Mobile Communications and Lindt & Sprüngli (UK) Ltd.

The earliest evidence for sexual intercourse and internal fertilisation has been discovered. In a paper published in Nature, a group of researchers from the Museum and other institutions revealed that sex among vertebrates evolved from a group of primitive fish called placoderms earlier than was previously thought, around 385 million years ago. The male fish had bony genital claspers, while the females had a pair of small bones that locked with the claspers during copulation.

November

The autopsy of a 28,000-year-old mammoth, the best-preserved specimen ever found, was the subject of a Channel 4 documentary. One of our paleontologists, Dr Tom Herridge, was part of the team that conducted the autopsy.

December

With the launch of the NHM iCollections project, we passed an important milestone in our drive to open up our collections and the information they contain to free access via the internet. The datasets available via the portal are being used by researchers around the world to achieve important scientific breakthroughs.

Around four billion microscopic plastic fibres could be littering each square kilometre of deep sea sediment, a team of scientists including Museum researchers has discovered. These microplastic particles arise from the breakdown of plastic debris and have the potential to harm the delicate balance of deep sea ecosystems.

Our 150 million year-old Stagiasaurus, named ‘Saphie’ went on display in December 2014 after a year of studying by our researchers. The Museum is grateful to the generous donors who made this iconic acquisition possible.

January

The news that we will be replacing Dippy, our much-loved plastron cast of a fossil Diplodocus, with a blue whale (06) attracted worldwide media attention. Dippy may have a new life ahead of him: we are planning a UK tour when he leaves Hintze Hall.

Early in 2015 we completed a major overhaul of our website to improve the experience for users and to help them engage more deeply in its content. Popular features like Nature Online attract internet users around the world.

February

HRH The Princess Royal attended the 75th anniversary dinner for the Special Operations Executive (SOE) held at the Museum. There was a covert SOE station at the Museum during the Second World War.

March

Coral Reefs: Secret Cities of the Sea (07), in partnership with Catlin Group Limited, opened offering visitors the opportunity to meet the incredibly diverse inhabitants of coral reefs and explore the work our researchers are doing to improve our understanding of these important but threatened ecosystems.

Our iCollections project team completed the digitising of all our UK and Irish butterfly collections, containing around half a million specimens.
Fit for the future

In 2014 the Museum set out on a journey to redefine what it means to be a museum of the natural world and its impact on society in the 21st century.

The Natural History Museum is transforming.

The Museum we are creating will be yet more innovative, challenging and global. It will be at the forefront of scientific and technological advances, stimulating people into thinking differently about the natural world and motivating them to participate in the new age of scientific discovery that is unfolding.

Our transformation will be progressive and far-reaching. During the next five years we will put the foundations in place. Then, over the following two decades, we will complete our vision. While we travel along this journey, everything that we do will be reimagined and renewed - how we create scientific knowledge and share it for the benefit of society, how we develop and care for the collections for future generations, how we make science a part of everyone’s lives and integral to our national culture.

Driving our transformation will be the three big narratives that define us: origins and evolution; the diversity of life; and sustainable futures.

Why change?

We live in remarkable times. Rapid advances in digital technology and communications are opening up exciting opportunities for museums like ours to curate their collections in ways that create greater value, both for the international research community and for the wider public.

But the world is changing in other, less welcome ways. Societies everywhere face formidable environmental challenges. Species and entire ecosystems are being destroyed faster than we can understand their significance. The very resources on which modern society relies are increasingly under threat.

The Natural History Museum with its unique collections is powerfully placed to take up these challenges through its cutting-edge research and by engaging the public with the science that it needs to know.

Much has already been achieved, but there is more to come. Our Strategy to 2020 sets out our vision for the future. It explains how we will extend our impact, using digital technology to reach out in compelling and distinctive ways nationally, internationally and as a world-leading museum in a global city.

The digital museum

We are embracing the digital revolution to make our collections and expertise more visible and accessible. Our ambitious digitisation programme is well advanced. Nearly 2.75 million specimens and their data are already available through our new NHM Data Portal. By 2020, the total will have reached 20 million, representing a quarter of our collections.

Collections data is of great scientific value and making it freely available online opens up new avenues of research. To give just one example, using information recorded at the time the specimens were collected, we can track how species have responded to past climate change - information that could be of great potential value as societies grapple with the threats to biodiversity of present and future climate change.

The digital revolution is also transforming how we engage with audiences. The Museum’s website has become a key component in our public strategy and in 2014/15 it attracted 13.2 million visits. Early in 2015 we completed a
National impact

We are proud of our heritage as one of Britain’s most cherished and respected institutions. This gives us a trusted position from which we can reach out to UK audiences and share with them our extraordinary collections and the important science that they support.

Our learning programmes continue to be popular and successful – in 2014/15 nearly a quarter of a million children and young people came to the Museum on school trips – and we are already doing much valuable work to support postgraduate courses and collections skills development. To build UK capacity further, we are extending our network of collaborative partnerships with national and regional organisations.

We want the British public to share our passion for the natural world and become actively involved. To this end we will continue to build innovative citizen science programmes with our partners and develop further tools like the Leafsnap UK tree identification app that we launched in 2014.

International strength

Our public engagement programmes reach out to international audiences and help to promote British cultural expertise. Our touring exhibitions travelled to 18 countries and attracted 2.3 million visitors during 2014/15. Our museum development consultancy service is in demand around the world. Nearly 40 per cent of visits to our website were international in origin.

Our research too is international in its scope. Most scientific breakthroughs today are the result of teamwork, often on a large scale. These teams comprise specialists from different disciplines and are often multinational, sometimes involving many universities and scientific institutions around the world. Increasingly, the public is also playing an important role through mass citizen science involvement – some 30,000 people took part in one recent project that the Museum supported.

Why are these teams so large? Because the most critical scientific questions can only be tackled at a global level.

We will do more to forge international research partnerships that address the big scientific questions, and have the high impact and quality necessary to compete effectively for grant funding. Our collections and expertise equip us to tackle issues of fundamental relevance to society, including biodiversity loss and the consequences of environmental change, the spread of parasitic and other diseases among humans and livestock, and the supply of food and scarce minerals.

Boosting London’s economy

London’s world-leading museums and galleries are a major factor in its success as a global destination. The Natural History Museum is one of London’s premier attractions – 5.4 million visitors came to our South Kensington and Tring galleries in 2014/15. We are helping to power London’s flourishing economy – conservative estimates, based on a study carried out by researchers at the London School of Economics, suggest that the Museum’s economic value to London and the UK is around £360 million annually.

Our visitors come from around the world and all over the UK. They have high expectations and we know that we must continue to improve their experiences with innovative exhibitions. Britain: One Million Years of the Human Story and Coral Reefs: Secret Cities of the Sea demonstrate our capabilities, entertaining visitors and giving them new insights into the natural world, the riches of our collections, and the valuable work our researchers are doing.

We will revitalise our permanent galleries and open up more public space, while easing congestion and reducing queuing at peak times. We are rethinking how we use the grounds, particularly the space between the Waterhouse Building and Cromwell Road where we want to create an inspirational starting point for our visitors’ journey of discovery into the natural world.

This is a big agenda. It will require significant capital investment and the continuing support of our funders, partners and helpers.

Generous supporters

We are fortunate to have so many generous and loyal friends supporting the Museum. Our supporters help us to fund inspiring acquisitions such as the Stegosaurus featured on the front of this Annual Review. Philanthropic trusts make an essential contribution and their support will be critical to our future plans – the £5 million so generously donated by The Hintze Family Charitable Foundation in 2014 creates vital investment in our future. We are indebted also to corporate partners such as Catlin Group Limited, and to the international scientific foundations and grant-awarding bodies that fund much of our research. And without the many volunteers who donate their precious time, our public engagement, curatorial and scientific work would be greatly impoverished.

We are grateful too for the continuing support of the UK government. Grant-in-aid remains our primary source of funding, although it has fallen by nearly a quarter in real terms since 2010/11. We have been able to make up the shortfall largely by increasing the income we generate from commercial activities and fundraising, but there is more we can do – our membership, consultancy, patrons and sponsorship programmes are priorities for development.

However, for the foreseeable future we depend on the good will of government for our core funding.

As I write, the new government is reviewing its spending priorities. We are arguing our case as strongly as we can. We believe that public money invested in the Natural History Museum is well spent; that as well as benefiting London, our work is creating value for the UK as a whole.

Moreover, with our new strategy in place, we are building a Natural History Museum that is fit for the challenging future that lies ahead and maintains our position of global pre-eminence.

Our Museum is ready to deliver more impact, greater relevance and even better value.

Sir Michael Dixon
Museum Director

You can read more about our plans for the future by downloading Strategy to 2020 from our website at www.nhm.ac.uk/about-us/our-vision.
Enabling

The collections that we care for are one of the world’s great scientific resources. We are making the information they contain freely available to encourage scientific innovation and discovery.

The 80 million specimens in our collections document 4.5 billion years of the solar system and life on Earth. We hold more than one million of the ‘type’ specimens that are used to define species – more than any other natural history collection – as well as unrivalled resources of geological specimens and the world’s finest natural history library. This is why our collections are such a powerful resource for exploring the science of nature.

Thanks to the internet, the collections and the data they contain are being accessed more widely than ever before by the world’s scientific community to answer big questions about our world.

Advances in digital technology, and pioneering work by our expert informatics team, are bringing our vision of a digital museum within reach. This is the target we have set ourselves: to digitise a quarter of our collections – 20 million specimens – by the end of 2020. Nor do we intend to stop there. Our eventual aim is to go beyond our own collections. Ultimately, we want to work in partnership with museums and botanic gardens to digitise more than a billion specimens held in collections around the world.

In addition to data from our natural history and geological collections, we are also digitising our extensive library collections. We have now contributed nearly 3.3 million pages to the Biodiversity Heritage Library, the global partnership of natural history and botanical libraries.

Digitisation drive

Our digitisation teams are working flat-out to achieve our ambitious targets. Their work involves taking multiple digital photos of each specimen and transcribing label information, which are then made accessible online. Volunteers make a vital contribution, and without their generous assistance our ambitious digitisation targets would not be achievable.

Labels for a seagull collected in 1910 during Scott’s British Antarctic Expedition. Specimen information is of great scientific importance and is being made available online as our collections are digitised.

The 80 million specimens in our collections document 4.5 billion years of the solar system and life on Earth. We hold more than one million of the ‘type’ specimens that are used to define species – more than any other natural history collection – as well as unrivalled resources of geological specimens and the world’s finest natural history library. This is why our collections are such a powerful resource for exploring the science of nature.

Thanks to the internet, the collections and the data they contain are being accessed more widely than ever before by the world’s scientific community to answer big questions about our world.

Advances in digital technology, and pioneering work by our expert informatics team, are bringing our vision of a digital museum within reach. This is the target we have set ourselves: to digitise a quarter of our collections – 20 million specimens – by the end of 2020. Nor do we intend to stop there. Our eventual aim is to go beyond our own collections. Ultimately, we want to work in partnership with museums and botanic gardens to digitise more than a billion specimens held in collections around the world.

In addition to data from our natural history and geological collections, we are also digitising our extensive library collections. We have now contributed nearly 3.3 million pages to the Biodiversity Heritage Library, the global partnership of natural history and botanical libraries.

Digitisation drive

Our digitisation teams are working flat-out to achieve our ambitious targets. Their work involves taking multiple digital photos of each specimen and transcribing label information, which are then made accessible online. Volunteers make a vital contribution, and without their generous assistance our ambitious digitisation targets would not be achievable.

Labels for a seagull collected in 1910 during Scott’s British Antarctic Expedition. Specimen information is of great scientific importance and is being made available online as our collections are digitised.
Digitisation is delivering scientific, technological and societal benefits. The free availability of large datasets is opening up many new avenues of scientific research with great potential value. We are developing new imaging and data tools to speed up the process of digitisation and facilitate access to the data. Moreover, large-scale digitisation draws in a wide community of citizen scientists whose participation is often essential in ‘big data’ research projects.

A key project, the digitising of a million British and Irish butterflies and moths, is well advanced with all butterflies completed. This will serve as a pilot for digitising all our pinned collections.

Three further pilot projects are already underway. We are scanning herbarium sheets from flowering plant collections that have potential agricultural applications. Our microscopic slide collection is being imaged to support medical and scientific use. And a project is underway to digitally capture dinosaurs, flying reptiles, fish, sharks and mammals in UK collections from the Mesozoic era (252 to 66 million years ago) – this will facilitate large-scale scientific projects on past climate change.

Below: The Medusa emerald, which the Museum has acquired with the generous support of The Cookson Charitable Trust. The emerald was hidden inside a boulder of quartz rock until it was recovered using remarkable technical artistry over several months of delicate work. It is now on permanent display in our Vault gallery alongside other fabulous jewels and mineral treasures.

Thanks to the internet, the collections and the data they contain are being accessed more widely than ever before by the world’s scientific community to answer big questions about our world.

Website access to our digitised collections has been greatly enhanced with the launch of the new NHM Data Portal in December 2014. Within the first two months 7,400 users accessed the database and much of the traffic originated from outside the UK.

Alongside the portal, we have developed powerful new modelling and data visualisation tools, including global distribution maps and statistical overviews. These allow researchers to explore patterns in the data for the first time. The findings can be applied to solving some of the world’s greatest challenges, from conserving the biodiversity on which our planet’s health depends to finding new ways to combat disease and exploit minerals.

Developing the collections

We are constantly developing our collections and the facilities that support them. The advent of sophisticated molecular technologies in recent years has revolutionised biological science. Our response has been to create a molecular collection and an ‘ancient DNA’ laboratory where next-generation sequencing is used to read DNA from very old and very small samples. We can now extract genomic information from a much wider range of biological material to tackle questions we would never have dreamed of a decade ago.

We are developing new DNA collections, such as the insect biodiversity archive of 50,000 specimens of insect pollinators. Many of these important insects, which play a vital role in biodiversity and agriculture, are in decline. The Museum has won government funding through the Insect Pollinators Initiative for the collection and data to support future research on changes in insect populations and diversity through time.

The pinned insect manipulator (IMp) is a new tool invented by scientists at the Museum. It uses Lego to hold and manipulate delicate specimens, such as tiny insects, so that they can be studied and photographed. IMp is a low-cost, easy-to-make tool – design and construction information can be downloaded from our website.
We also acquire new specimens to fill gaps in our collections and enhance their usefulness to researchers. The most notable addition to the collections in 2014/15 was the world’s most complete fossilised skeleton of a Stegosaurus dinosaur. Despite its fame, relatively little is known about this species and fossil finds are rare. The remarkable state of preservation of this specimen means that researchers are learning more about their evolution and behaviour.

Collections care is always paramount, to maximise access and benefit for users, and to protect our specimens for future generations. We aim to be a world leader in curatorial standards and we share our skills with other institutions in the UK and around the world. A consortium led by the Museum has recently been awarded a major grant to help develop the skills of natural history collections management staff across Europe. We’ve also initiated a partnership of UK museums to share expertise and develop joint activities on collections use, care and forward thinking.

Ultimately, we want to work in partnership with museums and botanic gardens to digitise more than a billion specimens held in collections around the world.

Right: Museum botanist Dr Sandy Knapp with herbarium sheets that are being scanned as part of a large-scale digitisation project with the Royal Botanic Gardens, Kew. By analysing the information these herbarium sheets contain, researchers will be able to track how plants that are key to human survival have adapted to past environmental changes. This could provide new insights into how the impact of future climate change can be mitigated to ensure food sustainability.

What next?

- Invest in digitisation to make the collections and big datasets openly available online, working alongside businesses, scientists and the public. We need to raise £30 million to achieve our goals.
- Continue to develop a collaborative network of natural history collections and analytical facilities in the UK and internationally to share resources and best practice. Explore new collections storage solutions with partners.
- Develop the collections to encourage their use in big science projects that address the challenges facing society. Extend our genomic repository, making more DNA collections available for research.
- Open up the use of our collections for public access and understanding through new galleries, exhibitions and outreach.
- Create more informatics and visualisation tools to maximise use of the data.
The scientific research that we do at the Museum has never been more relevant than it is today. Our planet is entering a period of rapid environmental change that threatens the stability of the natural ecosystems on which we humans depend and the supply of resources that underpin our economies.

Museum researchers collaborate with partners around the world to study the effects of biodiversity loss, pollution, mineral extraction and the spread of diseases, and we make our expert knowledge available so that solutions to these challenges can be found.

Our research draws deeply on the collections and by using our cutting-edge research facilities and the latest molecular techniques we are uncovering their secrets. Our core skill is taxonomy – a discipline which is in short supply – and we join with researchers at universities, museums, corporations and others to create compelling multidisciplinary project teams. To compete successfully for funding from the UK and international grant-awarding bodies, our work has to be of the highest quality, impact and relevance.

The new strategy introduced in 2015 refocuses our research around the Museum’s three big narratives: origins and evolution; diversity of life; and sustainable futures.

Exploring origins, evolution and futures
We study rocks, fossils, extra-terrestrial material and life forms, so that we can reveal the history of our solar system, explain the processes of evolution, and understand how humans fit into the natural world. A deep knowledge of the past equips us to interpret the present, and then to look forward to identify the likely direction and impact of future changes resulting from man-made and natural phenomena.

Our scientists study the mechanisms that underlie the formation of our solar system and planet, the key transitions in this 4.5 billion year story, and the origins, evolution and diversification of life, including our own species.

Discovering
Museum researchers are exploring our unique collections to create new knowledge – knowledge that is helping to tackle some of the biggest challenges facing the world today.
In several studies we are tracking how species have reacted and evolved in response to global warming, information that helps us to understand the likely consequences of current and future climatic changes. Much of our work draws on our own ‘big data’ – the extensive sets of specimen-related digital information now openly accessible via the NHM Data Portal.

In one recent study, a multipartner team has identified the key environmental impacts on marine animals during natural global warming in the early Jurassic period, 183 million years ago. The team’s findings will help to predict the future of modern marine ecosystems as sea temperatures rise.

In another ongoing project, we are using the heads of midge larvae preserved in lake sediments to trace temperature change in more recent time periods. The larvae act as ‘midge thermometers’, accurately recording the magnitude of past changes. This is helping scientists calibrate global climate models more accurately and improve their forecasting accuracy. Midge thermometers are being used in several different projects located in the UK, Russia and Kenya.

Understanding the diversity of life

Loss of biodiversity is one of the greatest challenges facing society. Our planet is losing species at an alarming – and accelerating – rate. We are now in the midst of the largest mass extinction since the end of the Cretaceous period 65 million years ago, when the dinosaurs died out. So far less than 20 per cent of the world’s known species have been described – we need to know more about the species that we still have so that ecosystems can be better understood and conservation efforts prioritised.

Supporting sustainable futures

Our taxonomic and geological skills are driving research projects aimed at securing the future of food supplies, controlling the spread of tropical diseases and finding more sustainable ways to extract minerals and other resources.

The decline of bumblebee species has worrying implications for pollination and food security. Our researchers are studying commercial bumblebees to support conservation needs and to identify the best pollinators.
Human population is predicted to reach 10 billion over the next 50 years, which means food supply has to rise dramatically. However, crop production is often hampered by changing environmental conditions. In one Museum-led project, a team is mapping the distribution of wild relatives of commercial tomatoes and potatoes in order to discover the characteristics that enable these plants to withstand stress. This information can be used by plant breeders to develop new future-proof crop strains that will help to address food security for the world’s growing population.

Our groundbreaking work on disease vectors, such as the mosquitoes that spread malaria, is saving lives. Schistosomiasis (also known as bilharzia) affects around 250 million people as well as livestock, mostly in sub-Saharan Africa, and can cause irreversible damage to vital internal organs. It can be contracted by anyone washing, bathing or swimming where there are freshwater snails infected with the flatworm parasite that carries the disease. Our researchers, supported by a genetic archive of snail and parasite samples, are working with stakeholders in Tanzania to keep this unpleasant disease in check.

Our ore scientists are working collaboratively with industry and institutional partners in the UK and around the world to ensure sustainable supplies of raw materials for future generations. CERCAMS, the Centre for Russian and Central Eurasian Mineral Studies, is based at the Museum and is the focus of much collaborative and productive research into the resources of this mineral-rich region.

In a major new project funded by the European Commission, we are targeting our expertise towards identifying new and more efficient ways to extract the minerals needed for modern technologies. Demand is strong for e-tech metals such as indium, gallium and antimony. Supplies of some of these metals are still abundant in old mines but are not accessible with traditional methods – the new recovery techniques we are developing will help the mining industry make better use of these resources.

What next?

• Lead and participate in more collaborative projects to win large-scale funding.
• Continue to build the reputation of our research work, for example by increasing the number of articles published in high-impact journals.
• Develop our expertise in important new scientific disciplines, such as eTaxonomy and biodiversity genomics.
• Lead an international consortium to develop a 21st century toolkit for the discovery of biological diversity.
• Use our collections and expertise to tackle issues of fundamental relevance to science and society, such as climate change, food, health and supply of scarce minerals.
• Explore the major transitions in the evolution of life, Earth and the Solar System.
Enriching

We create innovative exhibitions that engage our visitors with the natural world and the exciting science that is unlocking so many of its secrets.

The Natural History Museum is one of Britain’s premier visitor attractions. In 2014/15 more than 5.4 million visitors from around the world came to our permanent galleries and special exhibitions at South Kensington and Tring. A further 2.3 million visitors came to our touring exhibitions that travelled to venues in 18 countries across 5 continents.

In 2014/15 we set out on a mission to transform our galleries and exhibitions around our three science narratives – understanding the origins and evolution of life, exploring its diversity, and building sustainable futures.

Enthralling exhibitions

Exhibitions like Coral Reefs: Secret Cities of the Sea, which opened in March 2015, make use of our collections in new and creative ways, while showcasing the research expertise that the collections support.

A partnership with Catlin Group Limited, Coral Reefs: Secret Cities of the Sea gives visitors an opportunity to experience a virtual reef dive, admire the live sea coral and fish in a special aquarium, and enjoy the spectacular underwater photography. Visitors can also find out why coral reefs are important, the dangers they face from climate change and other threats, and the work being done to secure their future.

For half a century the Wildlife Photographer of the Year exhibition has helped to keep the natural world in the public eye with astonishingly powerful and often moving images. Its popularity with photographers and audiences alike is enduring. The 2014 competition attracted 41,421 entries, and nearly 165,000 people visited the exhibition at South Kensington, while many thousands more will see it on its tour of more than 60 cities in the UK and across the world.

We marked the 50th anniversary of Wildlife Photographer of the Year in 2014 with a fresh approach. Images were exhibited on sleek back-lit photographic panels and several new categories were introduced to encourage more diverse images. For the first time, the public had a say in the awards with a special category – the People’s Choice Award.

Lazing lions took pride of place in the 50th Wildlife Photographer of the Year. American photographer Michael ‘Nick’ Nichols won the top award for his serene black-and-white image of lions resting with their cubs in Tanzania’s Serengeti National Park.

© Michael ‘Nick’ Nichols (USA)
We aim to delight family audiences with exhibitions that are fun, informative and inspiring. Mammoths: Ice Age Giants during 2014 captured the imagination of adults and children. The star of the show was Lyuba, a baby woolly mammoth discovered in Siberia in May 2007. Sensational Butterflies opened in April 2014 for its sixth year on the Museum’s east lawn, charming families with the magic of butterflies and their exotic life cycles.

The Natural History Museum at Tring also creates innovative and popular exhibitions for families. One such exhibition, Deadly!, featured some of the world’s most dangerous creatures and the ingenious methods of attack that make them so dangerous.

During 2015/16 we are pioneering a new approach to boost our presence across the UK, based on the success of Britain: One Million Years of the Human Story, which attracted more than 70,000 visitors. This exhibition included some of the most precious treasures from our collections as well as the most lifelike and scientifically accurate Neanderthal and Homo sapiens models ever made, while bringing the work of Museum scientists and their collaborators in the Ancient Human Origins of Britain project to wider public attention.

In our new project, we are creating Humans in Ancient Britain displays with regional partners. These displays are individually tailored to each venue to ensure that they are relevant to the locality. We are lending some of our most important and fragile specimens.

One of the main attractions in Coral Reefs: Secret Cities of the Sea is the aquarium created for us by staff at the Horniman Museum & Gardens in London. Vibrant with marine life, the aquarium holds over 20 species of coral and around 100 fish, selected to represent a Western Pacific reef ecosystem.

Our most recent gallery, Volcanoes and Earthquakes, reveals the forces that have shaped the planet. As well as showcasing specimens from our collections, there is a plate tectonics room, an earthquake simulator and interactive games for visitors to enjoy.

Taking the Darwin Centre as our inspiration, we have embarked on a 25-year programme to reimagine our galleries and public spaces. Drawing on our unique collections, and the compelling stories that the specimens tell, we will invite visitors to challenge the way that they think about the natural world and humanity’s place within it.

Our two most recent galleries, Treasures and Volcanoes and Earthquakes, point the way ahead. Treasures, which opened in 2012 in the Cadogan Gallery, brings together on permanent display 22 of the world’s greatest scientific and cultural objects, such as the skull of the first-discovered Neanderthal and the famous London specimen of the first bird, Archaeopteryx.

Volcanoes and Earthquakes, which opened in 2014, combines our own scientific research, immersive experiences, case studies and information from around the world to provide fresh insights into these great natural forces.

Our next major gallery development is Life on Land, which will be the first of a series of new permanent galleries showcasing the diversity and interconnectedness of terrestrial life through the Museum’s rich collections. It will be the Museum’s largest gallery – visitors will be able to immerse themselves in different habitats, reflect on their fragility, and consider the crucial relationships between living organisms and their environments. We are planning to open the new gallery in 2018.
In 2014/15 we set out on a mission to transform our South Kensington and Tring exhibition spaces around our three science narratives.

Hand-in-hand with transforming our galleries, we are also rethinking the other public spaces at South Kensington to maximise their potential and ensure that our visitors have the best possible experience. In 2014 Niall McLaughlin Architects were appointed to redesign the way we use the grounds. Their brief: to create a new civic public realm that will be a fitting setting for the much-loved Waterhouse building and its collections.

Digital support
We strive constantly to improve our visitor services and we see digital support as a major opportunity.

During 2014/15 we completed our roll-out of free wi-fi, which is now available at our South Kensington and Tring public spaces, including access points in some areas of the grounds.

Our new visitor app with MasterCard was launched in January 2015 on the Android and iPhone platforms. Versions are available in Spanish, French and Italian as well English. The app helps visitors find their way around our galleries and provides up-to-date listings for events such as our special exhibitions and Nature Live talks. Visitors can use the app to locate Museum specimens featured in the BBC Radio 4 series Natural Histories broadcast during 2015.

We plan more digital innovations that engage visitors and enrich their experience.

What next?
• Breathe new life into Hintze Hall and reimagine the central specimen through the spectacular blue whale, which will replace the Diplodocus skeleton cast. Inspirational displays on the natural world will welcome the public to the Museum.
• Open up more public space and redevelop the public areas and grounds.
• Pursue an exhibition programme around the collections and our three big narratives that engages UK and global audiences.
• Design and develop Life on Land, the first of a series of new permanent galleries celebrating the diversity of life.
Inspiring

We want people to be passionate about the natural world. We delight them with its beauty and diversity, we challenge them to think differently about it, and we give them the impetus and support to become its custodians.

Since its foundation at South Kensington in 1881, the Museum has always occupied a trusted niche in British cultural life and has won international respect. This gives us a privileged platform, which we use to encourage better understanding of the natural world, the challenges it faces, and the new discoveries that are changing the way we think about our planet.

We are bringing together our scientific, curatorial and public engagement skills in many different and compelling ways, from live public science events and innovative schools programmes, to advanced skills training and citizen science activities. The work we do is inspiring children, young people and adults to become professional and amateur scientists.

Connecting with the public

We reach out to millions of people across the UK and internationally through our public events programme, our prominent media presence and our much-visited website.

At face-to-face and online events we seek to engage the public with contemporary scientific questions and discoveries. Anyone can drop in to our Nature Live talks every day at the Attenborough Studio in the Darwin Centre, which are also available via webcast. One evening each year, we hold Science Uncovered, our ‘open day’, when we celebrate our science with the public – around 8,500 people came to the 2014 event and over 300 scientists participated.

Museum researchers and curators make their skills available to the public by participating in public events around the UK, such as the annual Lyme Regis Fossil Festival, and by answering identification questions in person – in 2014/15 we dealt with 4,142 scientific enquiries.

Every year we invite a prominent scientist to give the Annual Science Lecture – the 2014 lecturer was Sir Paul Nurse, President of the Royal Society and Nobel Prize winner. His theme was Science as Revolution.

Our experts are prominent in the media, providing context and perspective on new discoveries. We act as a voice of authority on the natural world and are often the first point of contact for journalists on subjects as varied as human evolution, dinosaurs and changing patterns of biodiversity.

Visitors enjoying the Museum after hours at one of our expert-led Latex events. The Museum opens until 22.00 on the last Friday of each month.
Digital impact

Through our website www.nhm.ac.uk we connect with millions of people in the UK and around the world. In 2014/15 the website attracted 13.2 million visits, an increase of 15 per cent on the previous year.

Early in 2015 we completed a thorough redevelopment of the entire website. We have renewed the content, overhauled the underlying technology and restructured the information architecture to make it more engaging and interactive. There are videos, features, blogs by our scientists and more for online visitors to explore, together with useful tools for identification.

The new Discover section encourages visitors to delve into the stories that our specimens tell and the three big narratives that support our scientific research.

Social media is an increasingly important part of our engagement with the public. We are a fast-growing presence on Twitter – in 2014/15 our following increased by nearly 50 per cent to 773,000. We are also growing rapidly on new and minority platforms such as Pinterest and Instagram. Viewing of our videos on YouTube increased by over 500,000 to 1.9 million.

A powerhouse of learning

We already offer rich opportunities for family, school and adult learners, and we plan to extend our range of learning programmes further through partnerships with national and regional organisations. Our aim is to enhance science learning in schools and beyond.

The family opportunities we offer include Explorer gallery trails, art activities and opportunities to handle specimens, for example at our Investigate hands-on centre. Our gallery characters, Dino Dan, Mary Anning and Circadian Sam, engage with visitors in the galleries.

Our popular schools programmes are closely linked to the Key Stages learning framework and enthuse children and young people so that they go on to build lifelong relationships with the natural world. Visit the Museum any weekday during term time and you’ll find that our galleries and learning spaces are buzzing with school children absorbed in science-based activities, from storytelling with puppets to workshops and science shows for older school students.

The well-regarded Real World Science (RWS) programme continues to flourish and is now in its 12th year. RWS is a collaborative partnership of UK museums that hold natural history collections. It brings primary and secondary school pupils from Key Stages 2–5 together with our scientists, promoting scientific literacy and inspiring students to take their interest in science further. In 2014/15 nearly 28,000 pupils participated from more than 800 schools.

The RWS research and development programme has obtained three-year funding from the Eranda Foundation to provide further opportunities for secondary school science learning. During 2014/15 we worked with Stoke-on-Trent Museums, Leeds Museums and Galleries and Wollaton Hall in Nottingham to develop a series of after-school activities that engage with issues around geology and fossil fuels.

Additional funding from the Arts Council will enable us to continue our support for another regional partnership, Museums and Schools. We are working with Peterborough Museum to develop plans for new education facilities and programmes at the Flag Fen Bronze Age archaeological site.

Schools can even participate in real hands-on science through innovative projects such as The Microverse. Launched in 2015, this is cutting-edge scientific research to explore the diversity of the many unnoticed but ecologically important microorganisms living on the exteriors of urban buildings. Schools participate by providing samples in the form of swabs taken from building surfaces under sterile conditions. These are then analysed by our scientists using DNA sequencing technologies to reveal the genetic codes and the results are fed back to schools for use in their learning programmes.

Training tomorrow’s scientists

The programme of higher education and professional training that we are developing is designed to increase the UK’s capacity in scientific and curatorial disciplines.
Postgraduate students registered at British universities can study with us for postgraduate qualifications. In 2014/15, 108 students were studying for PhDs at the Museum. We collaborate with 11 UK universities in five major Doctoral Training Partnerships funded by the Natural Environment Research Council (NERC) which provide training for future research scientists in the life and earth sciences. A further 32 students were enrolled on the MSc and MRes courses in taxonomy and biodiversity that we provide with Imperial College and University College London.

We offer a range of career development programmes, including short courses for environmental scientists and curatorial training workshops in which we collaborate with other UK natural history museums and organisations. In 2014/15 we won funding for seven NERC Advanced Training Short Courses in our areas of expertise.

We recently established a new programme with funding from the Heritage Lottery Fund, Identification Trainers for the Future. This is a work-based traineeship programme designed to address a critical and growing shortage of wildlife identification and recording skills in the UK.

Mobilising citizen scientists

Our focus for public participation in science is the Angela Marmont Centre for UK Biodiversity in the Darwin Centre. Here we bring together amateur naturalists and the wider public to explore key biodiversity issues, such as the impact of air quality on biodiversity in urban areas and the spread of non-native species, through citizen science projects that actively contribute to our science research. Projects in progress in Spring 2015 included Orchid Observers, the Big Seaweed Search, Notes from Nature and the annual Bluebell Survey.

By recording observations of wildlife, collecting samples, and transcribing handwritten records, citizen scientists are unlocking the potential of our collections and gathering vital data. We provide extensive resources and tools to support them, such as our recently launched Leafsnap UK app which uses visual recognition software to identify tree species from photos of their leaves.

Left: Pyramidal orchids. Our most recent citizen science initiative is Orchid Observers, a partnership research project with Oxford University’s Zooniverse platform funded by the Arts & Humanities Research Council. Amateur and professional botanists, together with nature-loving citizens across the country, upload photographs of orchid species to our dedicated website so that present-day flowering times can be compared with historical records. This will help us to understand the impact of climate change on the UK’s flora using orchids as a model group.

Right: Enjoying the natural world at an event in our Wildlife Garden.

What next?

• Continue to enrich our website and develop social media and other digital channels.

• Expand our learning centre at South Kensington and develop new activities and programmes for those in formal education, families and community groups.

• Work with national and regional organisations to enhance science learning in schools, and increase the UK’s capacity in scientific and curatorial disciplines.

• Strengthen our position as the UK centre of excellence for citizen science with new projects on extreme environments, climate change and development of virtual communities.
Our financial model is changing. We are less dependent than we once were on public funding and more self-reliant. Grant-in-aid from the UK government remains our primary source of revenue, accounting for 53 per cent of our income in 2014/15. Since 2010/11 grant-in-aid has fallen by 24 per cent in real terms.

Our response has been to grow the revenue we earn and receive from our commercial businesses and fundraising programmes. Gross self-generated income has risen by 26 per cent since 2009/10. In 2014/15 we earned £33.1 million – our most successful year to date. At the same time, we have improved efficiency and reduced costs wherever possible without compromising the quality of our public offer. This has helped us maintain stable levels of expenditure during a period of increased visitor numbers and rising overheads.

While the increase in self-generated income has compensated for the reduction in government funding, we now need to invest for the future. To achieve the vision set out in our Strategy to 2020 we are putting in place ambitious plans for further revenue growth.

Commercial potential

The income that we generate from our family of trading and consulting businesses has grown steadily and still has substantial further potential.

Our catering and retailing operations earn income from Museum visitors, while our publishing, image library and licensing businesses capitalise on the rich resources of our collections and our expertise. Our venue hire and events facilities make the most of the iconic Waterhouse building. Our special exhibitions like Wildlife Photographer of the Year generate earnings from entry fees, touring programmes and merchandising opportunities. Some of our paid-for events, such as our Dino Snores sleep-overs, have become great favourites with the public.

We offer our professional skills on a commercial basis to private and public sector clients through NHM Consulting. Our curators and public engagement specialists advise museums around the world on collections management and content – in one recent project we helped develop the natural history gallery at the King Abdulaziz Centre for World Culture in Saudi Arabia. Our scientific researchers work for clients in the biomedical, forensic, environmental and mining sectors. Recent projects include a collaboration with the European Space Agency to support planning and preparation for future exploratory missions to Mars and its moons.
A programme of major restructuring now nearing completion is preparing our trading and consulting businesses for the next phase of growth.

Competing for grants

We attract funding for our scientific work from UK and international grant-awarding bodies, often against stiff competition, and this too is targeted for growth.

In 2014/15 we received £3.5 million in scientific grants: The European Commission’s SYNTHESYS infrastructure programme, now in its third phase, continued to be a major source of grant funding. The Museum leads the SYNTHESYS consortium of 18 natural history collections across Europe, which is improving access to collections and promoting collaborative research.

During the year we were awarded several major grants including £580,000 from the Natural Environment Research Council (NERC) for a PREDICTS project on the impact of global land use change on biodiversity, see page 25, £386,000 from the European Commission for two H2020 Space Programme research projects, and £257,000 from NERC for new digitisation equipment including a state-of-the-art slide scanner. At the end of the year we competed successfully for £2.5 million of funding, also from NERC, for a major project on cobalt resource geology to support new industrial products.

Development, fundraising and donations

Philanthropic income from individuals, charitable trusts and foundations, corporate partnerships, statutory and lottery organisations is a vital revenue stream supporting the delivery of the Museum’s mission and strategy.

Development is a key priority for growth in our transformational five-year plan. We have recruited a Director of Development, expanded our team and during the next year we will present an ambitious fundraising strategy.

We are incredibly grateful to all our generous and loyal supporters for their important investment in the future of the Natural History Museum. Throughout this year we are proud to have achieved a number of Development highlights working together with our close circle of friends and supporters.

Sir Michael and Lady Hintze made a transformational investment of £5 million via The Hintze Family Charitable Foundation. In recognition of their extraordinary support the Museum has renamed the Central Hall, our most prominent public gallery, Hintze Hall.

Major collection developments were made possible through the generous support of Jeremy Hermann and donors who enabled the Museum to purchase Sophie the Stegosaurus (featured on the front cover). In addition our acquisition of the spectacular Medusa emerald was realised thanks to the generosity of The Caarkson Charitable Trust.

For the first time we entered into a partnership with one of our corporate supporters, Catlin Group Limited, in order to create the spectacular Coral Reefs: Secret Cities of the Sea exhibition, which united over 200 Museum specimens with our partner’s high-definition imagery and virtual dive technology.

We have refreshed our Patron programme to ensure our Patrons are benefiting from an ever-closer relationship with the Museum, enjoying privileged access to our collections, scientific research and public programmes. Our loyal Patrons join us at the forefront as we advance the science of nature, providing a reliable income stream to help secure the future of the Museum for tomorrow’s scientists and nature lovers. Through a refreshed programme of bespoke events, activities and communications, our Patrons have an exclusive opportunity to become part of the Natural History Museum’s journey.

In January 2015, we introduced a more proactive approach to encourage donations from visitors. Members of our Visitor Engagement team greet visitors on arrival and have introduced more effective messaging explaining the Museum’s work and mission to inspire donations.

In the first three months this has resulted in a 300 per cent uplift in onsite donations.

Membership drive

Our membership programme is undergoing a major upgrade. During 2014/15 we developed a new strategy and overhauled our systems to support a substantial uplift in member numbers and revenue over the next five years.

Members will enjoy an enhanced flow of topical information, news and commentary centred on the Museum’s three big narratives. The extended range of membership benefits will include behind-the-scenes access to our collections and science, previews and private viewings, an improved events programme and a redeveloped Members’ Room.

For the first time we entered into a partnership with one of our corporate supporters, Catlin Group Limited, in order to create the spectacular Coral Reefs: Secret Cities of the Sea exhibition, which united over 200 Museum specimens with our partner’s high-definition imagery and virtual dive technology.

Right: The Earth Hall is even more popular as a venue for events now that our recently-improved Stegosaurus has taken centre stage.

What next?

Our drive to grow self-generated revenue over the next five years will be focused on:

- Ambitious Development fundraising strategy to support the Museum’s vision.
- Greatly enhanced Membership and Patron programme.
- Stranger focus on winning scientific grants.
- Expanded NHM Consulting business.
- Transformed approach to retailing, both in the Museum shops and online.
- Continual improvement in all our trading businesses.
Visitor numbers to South Kensington and Tring
- **2014/15**: 5,132,000
- **2013/14**: 5,579,000
- **2012/13**: 5,437,000

Visitor numbers to international touring exhibitions
- **2014/15**: 2,100,000
- **2013/14**: 3,700,000
- **2012/13**: 2,300,000

Website visits
- **2014/15**: 8,410,000
- **2013/14**: 11,738,000
- **2012/13**: 13,221,000

Website visits
- **2014/15**: 263,000
- **2013/14**: 342,000
- **2012/13**: 773,000

Twitter followers
- **2014/15**: 585
- **2013/14**: 946
- **2012/13**: 860

Publications in peer-reviewed journals
- **2014/15**: 145
- **2013/14**: 546
- **2012/13**: 860

Number of visitor days for visiting researchers
- **2014/15**: 14,454
- **2013/14**: 14,813
- **2012/13**: 14,575

Value of major grants won (£)
- **2014/15**: 2,100,000
- **2013/14**: 4,700,000
- **2012/13**: 4,887,000

Net income from trading activities (£)
- **2014/15**: 8,420,000
- **2013/14**: 9,610,000
- **2012/13**: 11,550,000

Fundraising income (£)
- **2014/15**: 1,970,000
- **2013/14**: 3,580,000
- **2012/13**: 5,180,000

Booked school visits
- **2014/15**: 81,000
- **2013/14**: 204,000
- **2012/13**: 250,000

Booked school visits
- **2014/15**: 2,100,000
- **2013/14**: 4,700,000
- **2012/13**: 4,887,000

Booked school visits
- **2014/15**: 8,420,000
- **2013/14**: 9,610,000
- **2012/13**: 11,550,000

Booked school visits
- **2014/15**: 1,970,000
- **2013/14**: 3,580,000
- **2012/13**: 5,180,000

Booked school visits
- **2014/15**: 2,100,000
- **2013/14**: 4,700,000
- **2012/13**: 4,887,000

Booked school visits
- **2014/15**: 8,420,000
- **2013/14**: 9,610,000
- **2012/13**: 11,550,000

Booked school visits
- **2014/15**: 1,970,000
- **2013/14**: 3,580,000
- **2012/13**: 5,180,000
SUPPORTERS

The generosity of our supporters enables us to invest in capital developments, attain vital acquisitions for the collections, transform our galleries, deliver key learning programmes, develop innovative exhibitions and undertake high-impact scientific research.

We would like to thank all our supporters including our Patrons, those who have generously donated in-kind gifts, our anonymous donors and all those who have pledged legacies. We would also like to give special thanks to the Main Board Trustees, the Trustees of the Natural History Museum Development Trust and the Board of the International Friends for their commitment and support.

- **American Express**
- **James Anderson**
- **Baker & McKenzie**
- **Bloomberg L.P.**
- **William Broke Charitable Trust**
- **Dr Michael and Anna Brynberg Foundation**
- **The Cadogan Charity**
- **The Calleva Foundation**
- **Catlin Group Limited**
- **Tim Compton**
- **The Cooke Charitable Trust**
- **DCMS/Wolfson Museums and Galleries Improvement Fund**
- **DONG Energy**
- **The Eranda Foundation**
- **GlaxoSithKline plc**
- **Heritage Lottery Fund**
- **The Hintze Family Charitable Foundation**
- **Anthony and Gay Hoare**
- **The John Horseman Trust**
- **Huo Family Foundation (UK)**
- **Lindt & Sprüngli (UK) Ltd**
- **MasterCard**
- **Mayor of London**
- **Dean N Menegas and Family**
- **The Prince Albert II of Monaco Foundation**
- **Moore Capital Management**
- **Rio Tinto plc**
- **Chris Rokas**
- **Holly Smith and Neil Osborn**
- **Harvey M Soning**
- **Sony Mobile Communications**
- **The John Spedan Lewis Foundation**
- **The Street Foundation**
- **The Lord Leonard and Lady Estelle Wolfson Foundation**

INCOME AND EXPENDITURE

Income

<table>
<thead>
<tr>
<th></th>
<th>2012/13</th>
<th>2013/14</th>
<th>2014/15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admissions and membership</td>
<td>2,547</td>
<td>3,226</td>
<td>3,945</td>
</tr>
<tr>
<td>Government grant-in-aid</td>
<td>45,760</td>
<td>44,314</td>
<td>43,384</td>
</tr>
<tr>
<td>Other (inc investment income)</td>
<td>877</td>
<td>945</td>
<td>1,024</td>
</tr>
<tr>
<td>Scientific grants</td>
<td>4,404</td>
<td>4,062</td>
<td>3,506</td>
</tr>
<tr>
<td>Sponsorship and donations</td>
<td>2,381</td>
<td>3,618</td>
<td>5,114</td>
</tr>
<tr>
<td>Trading activities</td>
<td>18,462</td>
<td>18,963</td>
<td>19,556</td>
</tr>
<tr>
<td>Total income</td>
<td>74,431</td>
<td>75,128</td>
<td>76,529</td>
</tr>
</tbody>
</table>

Expenditure

<table>
<thead>
<tr>
<th></th>
<th>2012/13</th>
<th>2013/14</th>
<th>2014/15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial costs</td>
<td>12,115</td>
<td>12,655</td>
<td>13,324</td>
</tr>
<tr>
<td>Depreciation</td>
<td>12,511</td>
<td>12,488</td>
<td>11,604</td>
</tr>
<tr>
<td>Scientific curation, research and libraries</td>
<td>21,367</td>
<td>21,936</td>
<td>21,619</td>
</tr>
<tr>
<td>Support costs</td>
<td>17,220</td>
<td>18,640</td>
<td>19,125</td>
</tr>
<tr>
<td>Visitor facing activities</td>
<td>16,466</td>
<td>15,275</td>
<td>16,298</td>
</tr>
<tr>
<td>Total expenditure</td>
<td>79,679</td>
<td>80,994</td>
<td>81,969</td>
</tr>
</tbody>
</table>

Net incoming/outgoing resources inc depreciation

<table>
<thead>
<tr>
<th></th>
<th>2012/13</th>
<th>2013/14</th>
<th>2014/15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net incoming/outgoing resources inc depreciation</td>
<td>-5,248</td>
<td>-5,866</td>
<td>-5,440</td>
</tr>
</tbody>
</table>

Net incoming/outgoing resources exc depreciation

<table>
<thead>
<tr>
<th></th>
<th>2012/13</th>
<th>2013/14</th>
<th>2014/15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net incoming/outgoing resources exc depreciation</td>
<td>7,263</td>
<td>6,622</td>
<td>6,954</td>
</tr>
</tbody>
</table>

Capital expenditure

<table>
<thead>
<tr>
<th></th>
<th>2012/13</th>
<th>2013/14</th>
<th>2014/15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital expenditure</td>
<td>5,089</td>
<td>5,535</td>
<td>5,558</td>
</tr>
</tbody>
</table>

Figures shown in £k.

These figures are an overview and are subject to final audit.
OUR ENVIRONMENTAL IMPACT

We strive hard to minimise our environmental impact. We were the first UK museum to achieve ISO14001 environmental management accreditation across our whole estate, and in 2014 we retained our certification, demonstrating our commitment to continual improvement.

We work with our employees and suppliers to promote environmental best practice, and we also collaborate with partners on a range of awareness-raising activities. In 2014/15 these included Climate Week, Dr Bike and Exchanging Places. During the year we launched Green Impact, a scheme developed by the National Union of Students to promote sustainable behaviour change across organisations. In the first year of the scheme nine Museum teams completed the Bronze level workbook.

We achieved a significant reduction of 10 per cent in carbon emissions in 2014/15 mainly through increased generation from our on-site energy centre with its combined heat and power plant, and a greener UK energy mix. Water consumption was also lower. We have our own borehole which supplies around 40 per cent of our water requirements and is very cost effective.

<table>
<thead>
<tr>
<th></th>
<th>2012/13</th>
<th>2013/14</th>
<th>2014/15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon emissions (tonnes CO2)</td>
<td>11,242</td>
<td>11,602</td>
<td>10,371</td>
</tr>
<tr>
<td>Electricity consumption (MWh)</td>
<td>27,853</td>
<td>29,280</td>
<td>31,414</td>
</tr>
<tr>
<td>Gas consumption (MWh)</td>
<td>50,563</td>
<td>54,746</td>
<td>53,806</td>
</tr>
<tr>
<td>Water consumption (m³)</td>
<td>91,980</td>
<td>94,348</td>
<td>90,837</td>
</tr>
<tr>
<td>Waste (tonnes)</td>
<td>424</td>
<td>507</td>
<td>513</td>
</tr>
</tbody>
</table>