Non-Coding Changes Cause Sex-Specific Wing Size Differences between Closely Related Species of *Nasonia*

David W. Loehlin¹, Deodor C. S. G. Oliveira¹‡a, Rachel Edwards¹, Jonathan D. Giebel¹‡b, Michael E. Clark¹, M. Victoria Cattani¹, Louis van de Zande², Eveline C. Verhulst², Leo W. Beukeboom², Monica Muñoz-Torres³ª, John H. Werren¹ª

¹ Department of Biology, University of Rochester, Rochester, New York, United States of America, ² Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, Haren, The Netherlands, ³ Clemson University Genomics Institute, Clemson University, Clemson, South Carolina, United States of America

Abstract

The genetic basis of morphological differences among species is still poorly understood. We investigated the genetic basis of sex-specific differences in wing size between two closely related species of *Nasonia* by positional cloning of a major male-specific locus, *ws1* (ws1). Male wing size increases by 45% through cell size and cell number changes when the *ws1* allele from *N. giraulti* is backcrossed into a *N. vitripennis* genetic background. A positional cloning approach was used to fine-scale map the *ws1* locus to a 13.5 kilobase region. This region falls between *prospero* (a transcription factor involved in neurogenesis) and the master sex-determining gene *doublesex*. It contains the 5'-UTR and cis-regulatory domain of *doublesex*, and no coding sequence. Wing size reduction correlates with an increase in *doublesex* expression level that is specific to developing male wings. Our results indicate that non-coding changes are responsible for recent divergence in sex-specific morphology between two closely related species. We have not yet resolved whether wing size evolution at the *ws1* locus is caused by regulatory alterations of *dsx* or *prospero*, or by another mechanism. This study demonstrates the feasibility of efficient positional cloning of quantitative trait loci (QTL) involved in a broad array of phenotypic differences among *Nasonia* species.

Introduction

Somatic sexual differentiation is an ancient feature of animals, yet sex differences in morphological traits can evolve rapidly. Because of this, between-species genetic analysis of recently evolved sexual differences has been proposed as a way of identifying the genes and genetic changes that underlie morphological diversification [1]. For example, Kopp et al. [2] have found that a sex-specific abdominal pigmentation difference that recently evolved between *Drosophila* species is caused by non-coding *cis*-regulatory changes in the *bic-a-brac* gene, changes which involve binding sites for conserved transcription factors *doublesex* and *ABD-B* [3]. The study of recently evolved sex differences can therefore reveal changes in tissue- and sex-specific gene regulatory networks. Nevertheless, there have been few studies investigating the genetic and molecular basis of the recent evolution of morphological differences between species, due in part to the difficulty of conducting genetic analyses in diverged species that are often reproductively incompatible.

An active debate concerns whether the evolution of differences between species are due primarily to *cis*-regulatory or protein-coding changes (e.g., [4–8]). While protein-coding changes have been the focus of most historical studies of phenotypic evolution, it has been argued that changes to non-coding *cis*-regulatory elements may be more important, as they are crucial to the spatiotemporal control of gene expression in development and can change with potentially fewer pleiotropic effects on other processes [4,5]. However, empirical support for this claim is limited, largely by the difficulty of determining the genetic basis of phenotypic changes to a fine enough level to distinguish between *cis* and protein-coding changes [6]. An additional issue concerns whether the standing genetic variation for phenotypes within populations represent the same spectrum of mutations that go to fixation and become involved in species differences in phenotype [7]. Therefore, additional genetic studies of phenotypic evolution in recently diverged species are needed to help reveal the processes by which new morphologies evolve and the relative roles of *cis*-regulatory versus protein-coding changes in morphological evolution.

Here we investigate the genetic basis of male-specific differences between two species of *Nasonia*, *N. vitripennis* and *N. giraulti*. *Nasonia* is a complex of four closely related parasitic wasp species that is rapidly emerging as a model for evolutionary and developmental genetics [9,10]. *Nasonia* males are haploid, and therefore can be
Author Summary

The regulation of cell size and cell numbers is an important part of determining the size of organs in development, as well as of controlling cell over-proliferation in diseases such as cancer and diabetes. How the regulation of cell size and number can change to produce different organ sizes is not well understood. Here, we investigate the recent evolution of sex-specific wing size differences between two species that involve changes to cell size and number regulation. Males of the emerging genetic model wasp *Nasonia vitripennis* have small wings and do not fly, while males of the closely related species *N. giraulti* have large wings and do fly. We isolated a locus that contributes substantially to this wing size difference by increasing cell size and cell number. Surprisingly, we found that the determinant for this wing size difference is located in the non-coding region between two known transcription factors, the master sex determining gene *doublesex* and neurogenesis regulator *prospera*. The mechanism by which *ws1* regulates sex specific wing growth has yet to be determined, although differences in *dsx* expression level in developing male wings may indicate a role for this sex determination locus.

Results/Discussion

Sex-specific differences in wing size

*Nasonia* wings are composed of a larger forewing and smaller hindwing. Here we focus our attention on the forewing, although more subtle differences in the hindwing are also found between the species and sexes. *N. giraulti* male forewings are 2.16 fold larger in *N. vitripennis* background, accounting for 44% of the species difference. (3.2 ± 0.4 SD, compared to 4.6 ± 0.4 SD in *N. giraulti* Mann-Whitney U-test, p<0.05, n = 12). In contrast, the *ws1V* introgression shows the same density of cells per seta as *N. vitripennis* (3.2 ± 0.3 SD for each; U-test, p>0.05, n = 12), indicating that this species difference is not under the genetic control of the *ws1* locus. We then estimated cell number by counting total seta numbers on the size of the introgressed sequence flanking the *ws1* locus to a 40kb segment (see fine-scale mapping and cloning below) and backcrossed the introgressed *ws1G* segment into a standard *N. vitripennis* strain (AsymCX) genetic background for >10 generations. This strain is referred to as *ws1G_V_40kb*. Wing area ± S.D. relative to *ws1V* males is shown (see also Table 1). Scale bar: 100 μm. doi:10.1371/journal.pgen.1000821.g001

![Figure 1. Wing size differences due to *ws1*. Wings of *N. giraulti* (*ws1G*), *N. vitripennis* (*ws1V*) and *giraulti* *ws1* in *vitripennis* background (*ws1V_40kb*). Wing area ± S.D. relative to *ws1V* males is shown (see also Table 1). Scale bar: 100 μm.](image)

and to more precisely describe its phenotypic effects we (a) reduced the size of the introgressed sequence flanking the *ws1* locus to a 40kb segment (see fine-scale mapping and cloning below) and (b) backcrossed the introgressed *ws1I* segment into a standard *N. vitripennis* strain (AsymCX) genetic background for >10 generations. This strain is referred to as *ws1I_40kb*. Wing area ± S.D. relative to *ws1I* males is shown (see also Table 1). Scale bar: 100 μm. doi:10.1371/journal.pgen.1000821.g001

Figure 1. Wing size differences due to *ws1*. Wings of *N. giraulti* (*ws1G*), *N. vitripennis* (*ws1V*) and *giraulti* *ws1* in *vitripennis* background (*ws1V_40kb*). Wing area ± S.D. relative to *ws1V* males is shown (see also Table 1). Scale bar: 100 μm. doi:10.1371/journal.pgen.1000821.g001

readily genotyped for visible and molecular markers regardless of marker dominance. Furthermore, unlike most organisms, *Nasonia* species can be made inter-fertile in the lab by removing bacterial symbionts (*Wolbachia*) that cause sperm-egg incompatibilities among the species [11,12]. This permits movement of genes involved in phenotypic differences between the species by backcrossing [13–15]. Utilizing flanking visible and recessive lethal mutations and genetic and genomic tools in *Nasonia*, positional cloning of genes involved in species differences can then be accomplished [9].

*N. giraulti* males have large wings (Figure 1) and are capable of flight, whereas *N. vitripennis* males have vestigial wings and do not fly, although they use them in courtship and agonistic displays [16]. A major portion of the male-specific wing-size difference is due to two loci, *wing-size1* (*ws1*) and *widerwing* (*wdw*) [13,15]. Both *ws1* and *wdw* increase wing size in a sex specific fashion, as seen when introgressed from *N. giraulti* by backcrossing into an *N. vitripennis* background. In this study, we positionally cloned the *ws1* locus to a 13.5 Kb non-coding region, which falls near the sex determining locus *doublesex* [17,18] and includes its 5' UTR. This is the first positional cloning of a gene in *Nasonia*, and the study illustrates methods for utilizing haplodiploidy for efficient cloning of interspecies QTL in this genetic system.
N. longicornis and smaller male wing size has independently evolved in increase in the lineage leading to [15,20]. Thus, we can postulate that either (a) male wing reduction size is ancestral in the wings (Figure 1), whereas the other species form a monophyletic ancestral. However, the situation is complicated by the fact that males with large functional wings, suggesting that this state is more small-wing alleles between N. vitripennis and N. oneida (families).

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Forewing length</th>
<th>Forewing Width</th>
<th>Forewing Area</th>
<th>Head Width</th>
<th>N (Families)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males (absolute)</td>
<td>1065±28</td>
<td>326±11</td>
<td>242000±13000</td>
<td>402±9</td>
<td>40 (8)</td>
</tr>
<tr>
<td>ws1v</td>
<td>1.00±0.03 a</td>
<td>1.00±0.03 a</td>
<td>1.00±0.05 a</td>
<td>1.00±0.02 a</td>
<td>40 (8)</td>
</tr>
<tr>
<td>ws1v_{-40kb}</td>
<td>1.15±0.04 b</td>
<td>1.30±0.05 b</td>
<td>1.45±0.09 b</td>
<td>0.98±0.04 a</td>
<td>25 (5)</td>
</tr>
<tr>
<td>ws1v_{G}</td>
<td>1.28±0.04 c</td>
<td>1.81±0.05 c</td>
<td>2.16±0.13 c</td>
<td>1.01±0.03 a</td>
<td>40 (8)</td>
</tr>
<tr>
<td>Females (absolute)</td>
<td>2006±36</td>
<td>913±19</td>
<td>117500±43000</td>
<td>495±15</td>
<td>40 (8)</td>
</tr>
<tr>
<td>ws1v</td>
<td>1.00±0.02 a</td>
<td>1.00±0.02 a</td>
<td>1.00±0.04 a</td>
<td>1.00±0.03 a</td>
<td>40 (8)</td>
</tr>
<tr>
<td>ws1v_{-40kb}</td>
<td>1.02±0.02 a</td>
<td>1.02±0.02 a</td>
<td>1.03±0.05 a</td>
<td>0.98±0.02 a</td>
<td>24 (5)</td>
</tr>
<tr>
<td>ws1v_{G}</td>
<td>0.86±0.02 b</td>
<td>0.87±0.02 b</td>
<td>0.75±0.03 b</td>
<td>0.98±0.02 a</td>
<td>40 (8)</td>
</tr>
</tbody>
</table>

Table 2. Cell number and size effects of ws1, as estimated by seta number and area.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Seta Number</th>
<th>Seta Area (Nearest 4 Neighbors)</th>
<th>Distal Forewing Area</th>
<th>N (Families)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males (absolute)</td>
<td>580±44</td>
<td>117±2</td>
<td>135000±10000</td>
<td>8 (2)</td>
</tr>
<tr>
<td>ws1v</td>
<td>1.00±0.08</td>
<td>1.00±0.01</td>
<td>1.00±0.07</td>
<td>8 (2)</td>
</tr>
<tr>
<td>ws1v_{-40kb}</td>
<td>1.49±0.05</td>
<td>1.21±0.03</td>
<td>1.73±0.10</td>
<td>8 (2)</td>
</tr>
</tbody>
</table>

73%±10% increase in area of the distal half of the wing (Table 2; HSD tests, p<0.05).

It would be useful to know whether large or small male wing-size is ancestral in the Nasonia lineage. Other closely related species (e.g. Trichomalopsis sacrophaga, T. dubia, and Urolepis rufipes) have males with large functional wings, suggesting that this state is ancestral. However, the situation is complicated by the fact that the most basal diverging Nasonia species, N. vitripennis, has small wings (Figure 1), whereas the other species form a monophyletic clade [20] that contains both species with intermediate (N. longicornis) and large winged males (N. giraulti and N. oneida) [15,20]. Thus, we can postulate that either (a) male wing reduction began in the common ancestor to all four species, with subsequent increase in the lineage leading to N. giraulti and N. oneida, (b) smaller male wing size has independently evolved in N. vitripennis and N. longicornis, or (c) there has been introgression of one or more small-wing alleles between N. vitripennis and N. longicornis. Resolution of these alternatives will require more detailed phenotypic and sequence evaluation of the QTL involved in sex specific wing evolution.

Positional cloning of ws1

Positional cloning of the ws1 locus involved the following steps: (a) recessive lethals flanking ws1 were generated using already identified linked visible mutants, (b) these were then used to sequentially generate a set of recombinants on both sides of ws1 for fine-scale mapping and cloning of the gene, (c) a molecular (AFLP) marker tightly linked to ws1 was identified by genotyping recombinants, (d) this marker was then used to identify a set of BACs covering the region, which were assembled into contigs [21], (e) PCR based markers were developed for determining recombination intervals within the region using sequences from the BAC containing the AFLP marker, end sequences of flanking BACs, and corresponding vitripennis and/or giraulti markers (Table S1), (f) a set of increasingly finer-scale recombinants were screened to delineate the ws1 region and finally (g) additional sequence analysis within the cloned region was conducted to identify features within the region and differences between N. vitripennis and N. giraulti. The latter effort was enhanced by the availability of genome sequences for N. vitripennis (Genbank AAZX00000000) and N. giraulti (Genbank ADAO00000000) [10] which became available during the course of this project.

The method of assembly of BAC contigs is described in [21]. The approach for generating linked lethals and using these for cloning of QTL is described in methods and shown in Figure 2. Due to male haploidy, this method can be used to efficiently screen for recessive lethals linked to any gene of interest within the genome. Briefly, new lethal mutations linked to ws1 were generated by EMS mutagenesis followed by screening for linkage of the lethal to ws1. Use of custom-made lethals in this approach was effective because non-recombinant haploid males with the genotype lethal ws1_{L} die and, therefore, the only surviving males carrying the ws1_{L} allele are recombinants between the lethal and wing size locus (+ ws1_{L}) (Figure 2). These tightly linked lethals increased the “effective” discovery rate of recombinants within the region by 100–200 fold (Figure 2), greatly enhancing efficiency of the positional cloning effort. Thus, we were able to positionally

doi:10.1371/journal.pgen.1000821.t001

Table 1. Basic wing measurements of ws1 and wild-type strains.
clone ws1 despite a 10-fold lower recombination rate in this region, 0.10–0.14 centimorgan/megabase (cM/Mb) relative to the genome-wide average of 1.4–1.5 cM/Mb [22].

We first isolated the giraulti allele of ws1 by backcrossing into a vitripennis background and mapping the locus using visible, lethal and molecular markers (Figure 3A; see also Materials and Methods). Using one line (Rec1, Figure 3C) generated by recombination to the flanking recessive lethal D4, we then generated recombinants on the opposite side between ws1 and the flanking visible marker bl15, resulting in a recombinant line showing the ws1g phenotype with only 40kb of introgressed giraulti sequence. This large-winged recombinant strain (ws1gV_40kb) is used for our detailed phenotypic and gene expression analyses. Screening of additional recombinant genotypes revealed one recombinant strain (ws1V) which extended over part of the 13.5kb region (Figure 3C), including single nucleotide polymorphisms (SNPs), insertions/deletions (indels) and the insertion of a foldback transposable element into vitripennis. We sequenced the full foldback element and found that it does not contain protein coding sequences, but two inverted repeats of approximately 1.5kb and two small “stem loop” regions.

Investigation of intraspecific variation in the 13.5kb region and ultra-fine scale mapping is now being undertaken to narrow the region that is involved in the ws1 phenotype.

Effects of ws1 on dsx and pros expression

Based on our findings revealing ws1 to contain the 5’ non-coding region of doublesex, we next determined whether this region affects dsx expression. Nasonia doublesex has male and female splice-forms, and experimental evidence supports its role in sex determination in Nasonia [18]. As expected, the male splice-form of dsx (dsxM) is present in developing male wings of vitripennis (ws1gV_40kb) and ws1vV_40kb (Figure S3). However, quantitative RT-PCR reveals an estimated 2.4X higher level of dsxA transcript in developing preupal male wings of ws1gV_40kb relative to ws1vV_40kb (median 1.07X expression difference, n = 3; Table 3).

No expression difference was found in male wings for the flanking gene prospero (Table 3; median 1.07X expression difference between ws1gV and ws1vV_40kb). We note that while the introgression appeared to have no effect on pros expression in wings, higher pros transcript levels were observed in ws1V_40kb whole prepupa (Table 3). A likely explanation for this whole-body effect is that the larger 40kb of giraulti sequence in the tested strain extends over part of the pros gene, possibly affecting its regulation in whole body.

These gene expression data provide a sex- and tissue-specific correlation between dsx expression level and wing size. As with other positional cloning studies, our data do not rule out alternative scenarios that could link causative sequence changes in the 13.5kb region to wing size, such as (undetected) effects on prospero or long-distance regulation of a different gene. However, we do note that we started with a sex-specific phenotype and “walked” to a region adjacent to a gene known to be involved in somatic sex determination. Future work will be geared towards...
determining how *ws1* affects sex-specific changes in wing development, and specifically whether changes in *dsx* expression level causally influence male wing size in *Nasonia*.

**Concluding remarks**

Our results show that non-coding changes are responsible for the *ws1* male-specific wing phenotype. Unlike studies of candidate genes involved in sex differentiation, the positional cloning approach is candidate-blind, so it is intriguing that the region we identified as causing a sex specific increase in wing size (*ws1*) also contains the 5' UTR of the sex-signaling gene *doublesex*. Nevertheless a causal relationship between *ws1* and *dsx* has not yet been established. Previous studies [3,24] have implicated *dsx* in the evolution of sex-specific morphology. But rather than changes in *doublesex* itself, these studies revealed changes in downstream targets of *dsx*, via changes to specific DNA sequences to which DSX protein binds in the *cis*-regulatory regions of the *bric-a-brac* and *desatF* genes and affecting sex differences in abdominal pigmentation and pheromone production. In this study, we observed tissue-specific changes in *dsx* level, possibly due to *cis*-regulation. Dsx expression level manipulation has been found to affect cell number of a sex-specific cell type in the *Drosophila* brain [25]. If *dsx* is indeed the mechanism behind *ws1*, it would be the second case of *dsx* regulating sex-specific cell proliferation. Further, it would suggest that sex-specific morphology can evolve by

**Figure 3. Positional cloning: *ws1* maps to the *doublesex* locus.** (A) Recombination map of *ws1* and flanking phenotypic markers used for positional cloning. (B) Genome map of the region around *ws1* including gene annotations. (C) Genotype and phenotype of recombinants near *ws1*. Black: *N. giraulti*, White: *N. vitripennis*. (D) Map of sequence features in the 13.5kb *ws1* locus. Triangles: Insertions, with size given in base pairs (bp). Letters: Microsatellite repeats, with size given in bp. Blue: *dsx* 5'UTR.

doi:10.1371/journal.pgen.1000821.g003

**Figure 4. Change in *doublesex* expression due to *ws1*.** Expression level change was estimated by quantitative RT-PCR. Note that the *vitripennis* *dsx* protein-coding region is present in both genotypes (i.e., the *giraulti* region of *ws1V_40kb* does not include the *dsx* coding sequence). Mean expression ratios ± standard errors are shown. Expression ratios greater than 1 indicate higher male *dsx* (*dsxM*) transcript level in *ws1V* than in *ws1V_40kb*. Sample size indicates number of independent biological replicates.

doi:10.1371/journal.pgen.1000821.g004
spatially regulated changes in expression within the sex-determining pathway without disrupting other sex-determination functions. Other molecular mechanisms linking the cloned 13.5kb \( ws1 \) region to wing size evolution could also occur, including cis-regulation of \( prospero \), changes in non-coding RNAs, or long-distance regulation of another gene. \( Prospero \) is of particular interest because it is a transcription factor known to regulate cell proliferation in the \( Drosophila \) nervous system [23].

Cell size and cell number regulation are crucial elements of both organ size determination and control of human diseases such as cancer and diabetes [26]. Understanding how growth regulation can evolve therefore has the potential to broaden our knowledge of the operation of these gene networks. One notable example of organ size evolution is \( fzu \), which regulates tomato fruit size via cell number changes [27]. This gene was positionally cloned [27] and found to be a cell cycle regulator in plants [28]. In \( Nasonia \), non-coding cis-regulatory evolution at the \( ws1 \) locus causes changes in both cell size and cell number. The two genes flanking the \( ws1 \) region, \( doublesex \) and \( prospero \), have both been found to regulate neuronal cell numbers in \( Drosophila \), and \( doublesex \) does so sex-specifically [23,25]. How a 45% change in organ size might be achieved by either of these genes, each of which has a conserved homologue in the human genome, remains to be determined.

This study demonstrates the feasibility of positional cloning genes in \( Nasonia \). A number of biologically important phenotypic differences occur between \( Nasonia \) species, which are ripe for genetic investigation using this approach, such as wing and antennal morphology [20,29–30], host preference [14], pheromones and cuticular hydrocarbons [31], diapause [32], hybrid incompatibility [33–35], male courtship behavior [36] and female mate preference [20,37]. The four known \( Nasonia \) species are all inter-fertile in the laboratory, facilitating the isolation of genes involved in complex trait differences between each species [15,30]. The availability of genome sequences [10] combined with the haplodiploidy positional cloning methods described here now make it possible to determine the evolution of these complex traits on a molecular level in this emerging model organism [9].

### Materials and Methods

#### Strains used

Wing measurements were conducted using the inbred \( N. vitripennis \) strain AsymC and inbred \( N. giraulti \) strain R16A; these data are also reported in [15]. Gene expression experiments were conducted with the \( N. vitripennis \) AsymCX strain used for genome sequencing [10], which was derived from AsymC by multiple generations of sib-mating. All wing size and gene expression experiments used the minimal-introgression \( ws1 \) strain \( ws1V \), produced by backcrossing and selection for recombinants between \( ws1\) and linked visible and lethal mutants (see Positional Cloning below). This strain contains \(-40\)kb of introgressed \( giraulti \) DNA containing \( ws1 \), a \( vitripennis \) genetic background. It was constructed by backcrossing males from minimal-recombinant strain \( wm114 \) (Rec 4 in Figure 3C) into AsymCX for 10 generations to produce a homogeneous genetic background. Wild-type \( N. vitripennis \) and \( N. giraulti \) are also referred to as \( ws1V \) and \( ws1G \) in the text.

#### Wing size, cell size, and cell number measurements

Wing measurements were performed as in [15]. Briefly, individual females were given two \( Sarcophaga bullata \) hosts for 48 hours at 25C after host-feeding for 24 hours on two hosts (which were discarded). Male wing samples were collected from the offspring of single virgin females, while female wing samples were collected from the offspring of single mated females. Adult wings were dissected at the hinge adjoining the thorax and dry mounted on microscope slides under coverslips. Five individuals per family for 5–8 families were mounted; occasional damaged or misshapen wings meant that four individuals per family were measured.

Wings were photographed on a Zeiss Axiosmager Z1 compound scope at 10X as mosaic images. Measurements were performed on the wing images using AxioVision 4.6 software (Zeiss). Wing length, width, area, and head width (inter-ocular distance, a measure of body size) were measured as in [15]. Briefly, wing length is the distance between a notch at the proximal anterior end of the costal cell and the distal tip of the forewing. Wing width is the distance perpendicular to the length axis between the most anterior and most posterior points on the wing. Wing area is defined by outlining the wing starting at the proximal anterior notch. Measurements of wild-type \( N. vitripennis \) and \( N. giraulti \) shown here (Figure 1) are also reported in [15]. Images of \( ws1G \) and \( ws1V \) male wings shown in Figure 1 were cropped to remove other mounted wings which appear in frame but are not related to the displayed image.

Setae, hair-like structures produced by cells on the wing blade, were used to infer changes to cell size and number. This approach has been used to estimate cell size in other insects, particularly \( Drosophila \) [19]. To determine if seta number is a reasonable estimator of cell number in \( Nasonia \), the number of cells per seta was determined at the red-orange-eye pupal stage, where setae are most distinguishable before the wing sclerotizes and cell nuclei disappear. Papal male forewings were clipped and dissected from the cuticle in 1x TBST (9g Tris, 8.76g NaCl, 1mL Tween, 0.2g NaN3, 1L H2O, pH 7.5) then fixed on lyso-case slides in 3.7% formaldehyde. Slides were stained with DAPI and Alexa Fluor488-Phalloidin (Invitrogen, Carlsbad, CA, USA) and mounted in ProLong Gold (Invitrogen). The wing is not completely expanded at this stage and has some three-dimensional structure (Figure S1). Therefore, wings were imaged at 20X as mosaics under multiple focal planes, so that setae on both wing surfaces and all nuclei could be detected. All setae and nuclei were then counted within a

### Table 3. Gene expression analysis in the \( ws1 \) region.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Wing</th>
<th>Leg</th>
<th>Whole Prepupa</th>
</tr>
</thead>
<tbody>
<tr>
<td>( dsx^G ) - Males</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>7</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Median</td>
<td>2.39</td>
<td>1.07</td>
<td>1.15</td>
</tr>
<tr>
<td>Interquartile Range</td>
<td>0.60</td>
<td>0.31</td>
<td>0.35</td>
</tr>
<tr>
<td>( pros ) - Males</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Median</td>
<td>1.07</td>
<td>1.32</td>
<td>1.83</td>
</tr>
<tr>
<td>Interquartile Range</td>
<td>0.38</td>
<td>0.65</td>
<td>0.67</td>
</tr>
<tr>
<td>( dsx ) - Females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interquartile Range</td>
<td>1.57</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Expression level change was estimated by quantitative RT-PCR. Expression ratios greater than 1 indicate higher transcript level in \( ws1V \) than in \( ws1V \), corrected for control gene (\( rp49 \)) expression. N: number of independent biological replicates. \( dsx^G \): male \( dsx \) splice form. \( dsx \) in females used non-sex-specific primers.

doi:10.1371/journal.pgen.1000821.t003

---
30 μm radius circle placed between the stigma and the distal tip of the forewing.

Cell size and cell number estimates were derived from seta measurements on adult wings. Seta number and area per seta were counted in the distal half of the wing, where setae occur, following [15]. Specifically, a subset of the mounted adult male forewings was re-imaged at 20x through multiple focal planes. Each seta on the dorsal surface of the wing was counted and the area of the seta-containing part of the wing was measured (defined as the area distal to the cuticle) cell, based on the length (proximal-distal) axis described above; [13]. Cell number was inferred from the total seta number. Cell size was inferred by estimating the mean area occupied by each seta based on nearest neighbor distances using a custom perl script. Specifically, the average distance to each seta’s four nearest neighbors (\(d_{\text{avg}}\)) was calculated and then average area per seta across all setae was estimated as the mean of \(\pi \times (\frac{d_{\text{avg}}}{2})^2\).

Pairwise comparisons of wing measurements between genotypes (strains) were conducted using Tukey’s Honestly Significant Difference (HSD test, [38]), based on ANOVAs using family as a nesting factor within genotype. Because several morphological variables were measured per genotype, we used the conservative Bonferroni correction for multiple tests. P-values shown were corrected by multiplying by the number of tests conducted in each analysis (Table 1: 8 tests (4 variables and 2 sexes per genotype), Table 2: 3 tests (3 variables per genotype).

### Positional cloning methods

Positional cloning efforts were begun by identifying visible mutants linked to \(wsl\). Using the original \(wsl\) introgression from \(giraulti\) into \(vitripennis\) (INT\_1.1, [13]), it was ascertained that the visible eye color mutant or123 and body color mutant bl13 map near to \(wsl\). A second introgression of \(wsl\) into \(vitripennis\) containing a large \(giraulti\) flanking region was used for most of the fine-scale mapping and positional cloning work (strain INT\_bkbw, described in [14]). This introgression contains a naturally occurring \(giraulti\) black eye color allele, \(bk\), linked to \(wsl\). We found that \(bk\) fails to complement the \(N.\ vitripennis\) mutant \(bk576\) in heterozygous females. \(bk\) produces oyster-gray eyes in the \(pe333\) (peach eye) mutant background, which is easier to see than the black eyes of the mutant in wild-type background. A recombination map of these visible markers is shown in Figure 3A.

To further assist in the positional cloning, recessive lethal mutations linked to \(wsl\) were generated in the INT\_bkbw strain by ethyl methanesulfonate (EMS) treatment of males carrying \(wsl\). Ten bkbw (\(wsl\_bkbw\); \(pe333\)) males were placed in 25mm Drosophila vials containing filter paper soaked 10% sucrose solution containing 0.25–0.5% EMS (Sigma Chemical). After 7–10h, males were transferred to a vial containing clean filter paper overnight. Mutagenized males were then crossed to linked visible mutant strain \(bl13\); \(pe333\). F1 virgin females were collected, transferred to individual cells of plastic 24-well culture plates (various manufacturers) and given a single fly host to lay eggs. Plates were sealed with a double layer of Microprobe tape (product number 1530-03, 3M Corporation) and incubated at 25°C. After 48h, females were transferred to a new plate containing a \(pe333\) male black-stage pupa and a spot of honey water. After matng, the wasps were anaesthetized at 4°C and on ice, 2 fly hosts were added to each well, and then incubated at 21°C. Newly-created linked recessive lethal markers were identified by distortions in F2 ratios of the visible markers (\(wsl\_bkbw\), \(bk\) and \(bl13\)) among the haploid F2 males of the virgin hosting (as in Figure 2) and then linkage relationships were determined. Lethal lines were maintained using heterozygous female offspring. One lethal line, \(lethal^{P4}\), was primarily used for mapping in this study, due to its close linkage to \(wsl\) and its position on the side opposite the visible markers (Figure 3A).

To collect recombinant males for positional cloning, females heterozygous for \(wsl\_bkbw\) and a flanking visible or lethal marker were set as virgin and resulting haploid male progeny were screened for recombination between the marker locus and \(wsl\) by phenotype (Figure 2). Use of lethals in this approach was especially effective because non-recombinant haploid \(lethal\) \(wsl\_bkbw\) males die; the only surviving males carrying the \(wsl\_bkbw\) allele were recombinants between the lethal and wing size locus. Penetrance of the lethal genes used was found to be 100%. These tightly linked markers increased the “effective” discovery rate of recombinants within the region by 100–200 fold, greatly enhancing efficiency of the positional cloning efforts.

A crucial step in the cloning effort was identification of molecular markers within the \(wsl\) region to assist in fine-scale recombinant mapping. Initially this was accomplished by screening the original \(wsl\_bkbw\) introgression line and recombinants between it and flanking visible markers for linked Amplified Fragment Length Polymorphism (AFLP) markers. This was done using methods previously reported in [39]. A marker termed “AF1” was identified and found to be tightly linked to \(wsl\). The marker was cloned and sequenced. PCR products from primers designed to AF1 were used to screen a BAC library to \(N.\ vitripennis\). Ends of a subset of BACs were sequenced, the library re-screened, and then RFLP typed to assemble a set of contig BACs [21]. BAC-end sequences were then used to generate a set of molecular markers distinguishing \(vitripennis\) and \(giraulti\) by PCR and RFLP (Table S1; [21]). Subsequent sequencing of a \(giraulti\) BAC (Genbank accession AC183530) which included the entire \(wsl\_g\) region and alignment of \(vitripennis\) and \(giraulti\) trace reads from the \(Nasonia\) genome project were used to identify additional PCR markers for ultra fine-scale mapping, and identification of recombination breakpoints by sequencing. Genotyping primers and PCR conditions are shown in Table S1.

Over 2000 recombinant haploid males were identified between \(wsl\) and either the visible or lethal marker. These were screened with molecular markers to identify the location of recombination within the region around \(wsl\). The most informative recombinants are shown in Figure 3C. These include recombinants produced from the INT\_w1.1 introgression (Rec 5) and the INT\_bkbw introgression (Recs 1–4, 6–7). To define the \(wsl\) region further, a strain was established from a recombinant between the flanking \(lethal^{P4}\) and \(wsl\) that contained a relatively small region of \(giraulti\) introgression but retained the large wing phenotype (Rec1 in Figure 3C). This strain was used for subsequent recombination to the other flanking region (\(bl13\) side). A recombinant from this second set containing only 40kb of \(giraulti\) sequence (Rec4, Figure 3C) yet still showing the “\(wsl\)” large-wing phenotype (Figure 1) was then backcrossed into the genome-sequenced AsymCX strain for >10 generations, and then purebred. This strain (called \(wsl\_bkbw\_40kb\)) was used for wing measurements and quantitative PCR. Additional recombinants from these experiments further localized the \(wsl\) effect to a 10.8kb region in \(giraulti\), and a corresponding 13.5kb in \(vitripennis\) due to insertion/deletion differences. We examined this sequence and flanking regions for gene predictions [10] and also manually scanned the region for open reading frames and ESTs [18]. The region does not contain protein coding sequence for \(dsx\), but only the \(dsx\) 5’ UTR, promoter and cis-regulatory region.

### Recombination rate

We estimated the recombination rate between \(wsl\) and \(lethal^{P4}\) by counting all (living) male offspring of a set of virgin females (\(lethal^{P4}\ \text{or} \ wsl\_bkbw\_+/+) hosted for positional cloning, 89 males out of
15594 screened were recombiant (+\*ws1\_*), a map distance of 0.57cM. Of a larger set of 683 +\*ws1\_* recombinant males screened with the \*ws1\_8 marker (Table S1), 6 were recombiant between \*ws1\_8 and \*ws1\_*\_4, a distance of 36–50kb (uncertainty is due to the uncertainty in the location of \*ws1\_8 in the 13.5kb region). Local recombination rate was calculated as [0.57 cM between \*ws1\_8 and \*lethalD4\_*] / (683 recombinants between \*ws1\_*\_4 and \*lethalD4\_*) = 0.14 – 0.10 cM/Mb.

RT–PCR and quantitative RT–PCR
RNA was isolated from wing discs, leg discs and whole individuals at the third instar larvae - prepupal transition. We found that this stage can be precisely identified to a few hours, before defecation of the larval cuticle and ecysis. Wing and leg discs were dissected from post-defecation prepupae under RNAse free conditions in 1X phosphate-buffered saline. After dissection, tissues were placed immediately on ice and if necessary stored at −80 °C until RNA was isolated. Independent extractions of tissue were conducted to produce independent biological replicates. Each biological replicate consisted of 15–30 prepupal wings or legs or single whole prepupa of each genotype (ws1\_V, ws1\_F, 40kb). Total RNA was isolated using Trizol (Invitrogen). RNA was then quantitated using a Qubit fluorometer (Invitrogen) and a Quant-iT RNA Assay Kit (Invitrogen) or a ND-1000 Spectrophotometer (NanodropTechnologies, Oxfordshire, UK). Expression of EVF431998 was tested in RT-PCR with primers TGGAGGGCTGATAGTAAAGGC and AACTTCTGATCTCCCTGAGCCAC. RT-PCR of other genes (dsx and pros) and reaction conditions are presented in [18].

For quantitative RT-PCR, first-strand cDNA Synthesis and qPCR were performed using SuperScript™ III Platinum SYBR Green Two-Step qRT-PCR Kit with ROX (Invitrogen) on an Applied Biosystems 7300 Real Time PCR System. RNA samples were split into reverse-transcribed and -RT controls. Male specific dsx (\*dsx\_M) was amplified using primers CCCTCGCCATGCTGCTTGCAC and AACCTTGGTAGATCCTAGCCAT and AATACCTTGACCTTCTGAGATAAGCATCT (Figure S2). In females, dsx was amplified using non-sex-specific primers CGGCCCTGGAG TTGCATTGAGTAGCAT and AATACCTTGACCTTCTGAGATAAGCATCT and AACCTTGGTGGGAGATAAGCATCTAGCAT and AATACCTTGACCTTCTGAGATAAGCATCT (Figure S3). PCR efficiency, and so the magnitude of expression ratios should be adjusted uniformly for each panel to improve visual contrast. Scale bar for (A–G): 10 μm. Scale bar for (G–I): 10 μm.

Figure S2 Locations of dsx primers. Primer locations used for RT-PCR and qPCR of dsx are shown in relation to the dsx gene model. Male and female splice-forms are adapted from [18]. Lengths are not to scale. Approximate primer locations (half-arrows) are shown on the male splice-form for (a) male-specific \*dsx\_M qPCR, (b) non-sex-specific \*dsx \_qPCR, and (c) \*dsx \_RT-PCR. Figure S3 \*dsx splicing in male prepupal wings. RT–PCR of the differentially spliced 3’ domain of dsx in prepupal male wings is shown. RNA from single male prepupal wings, single male prepupal legs, and single whole pupal females was isolated using the Dynabeads mRNA DIRECT Micro Kit (Invitrogen) by the mini volumes protocol. Black arrowhead: 573bp unspliced (male) product. White arrowhead: 463bp spliced (female) product. Presence of unspliced \*dsx product in females is expected [18]. (A) (i, ii) Standard RT-PCR. Lanes 1, 2: \*ws1\_V male prepupal wing cDNA. Lanes 3, 4: \*ws1\_V male prepupal leg cDNA. Lane 5: \*ws1\_V 40kb male prepupal wing cDNA. Lane 6: \*ws1\_V 40kb male prepupal leg cDNA. Lane 7: \*ws1\_V female whole pupal cDNA included for reference. (Aii) Lane 8: no-template control (image from a separate row of same gel). 1kb: 1 kilobase DNA ladder (Invitrogen). (B) RT-PCR using concentrated cDNA. Specifically, \*ws1\_V 40kb male prepupal leg cDNA. Lane 7: \*ws1\_V female whole pupal cDNA included for reference. (Bii) Lane 9: and Lane 10: cDNAs were re-isolated from the same cDNA preps described above using the poly-T Dynabeads, which were resuspended in PCR mix. Lane 11: female whole pupal cDNA (unconcentrated; same cDNA as Lane 7). Lane 12: no-template control. PCR conditions: dsdxs_FF and dsdxs_FR2 primers (see Figure S2) [18]; 2 min at 94°C, 2x (30s at 94°C, 30s at 53°C, 5 min at 72°C), 35x (30s at 94°C, 30s at 53°C, 5 min at 72°C), 35x (30s at 94°C, 30s at 53°C, 5 min at 72°C).

Table S1 Primers used to genotype recombinants in the \*ws1\_region. Base pair position in N. vitripennis genome assembly v1.0 SCAFFOLD23 is shown. Dashed line denotes markers within the mapped 13.5kb/10.8kb \*ws1\_ region. PCR conditions for all markers: 94°C for 2min, 34 cycles of (94°C for 30s, 55°C for 45s, 72°C for 60s). 72°C for 10min. Enzyme: Restriction enzyme used to distinguish the ampiclon of the two species-genotypes. Assays marked with “indel” did not require enzymes to distinguish the species-genotype; “sequence” requires sequencing of the PCR product.

Acknowledgments
We are grateful to J. Romero-Severson for developing the N. vitripennis BAC library; Stephen Richards and the Baylor Human Genome Sequencing center for sequencing of BAC clones as part of the Nasonia genome project; Rhioban Raychoudhury, Jen Traggis, Laramy Enders, and Adityarup Chakravorty for assistance with laboratory work; Heinrich Jasper for advice on qPCR; and Claude Desplan for comments on the manuscript.
Author Contributions

Conceived and designed the experiments: DWL LxdZ LWB JHW. Performed the experiments: DWL DCSGO RE JDG MMT JHW. Wrote the paper: DWL DCSGO JHW.

References