The Moon

We are studying lunar meteorites and Apollo samples to learn more about the origin and early evolution of our natural satellite.

The Moon formed from the accretion of debris produced when an object the size of Mars crashed into Earth. The lunar surface was initially covered by a magma ocean, which slowly crystallised and solidified. 

Current research

We are studying lunar basalts and anorthosites from two sources:

  • Samples
    The Apollo and Luna missions returned around 380kg of lunar material in the 1960s and 1970s.  
  • Meteorites from the Museum collection
    Lunar meteorites sample random areas of the Moon. Some of our specimens may come from the lunar far side, which was not targeted by sample-collecting missions.

Our research addresses key questions about the early history of the Moon, including:

How did the Moon acquire its water?

Lunar materials contain small but measurable amounts of water bound up within minerals. We are analysing the deuterium/hydrogen (D/H) ratio of this water to determine its origin. 

Our findings suggest that the composition of lunar water was probably initially similar to Earth and that some was later fractionated.

What was the original composition of the lunar magma ocean? 

We are measuring trace element abundances in minerals that crystallised from the lunar magma ocean. Initial results suggest that the magma ocean was heterogeneous in composition.

Methods

We use a combination of mineralogy and petrology techniques, including:

  • scanning electron microscopy and electron microprobes
  • laser ablation ICP-MS to determine trace element abundances
  • NanoSIMS to determine D/H ratios
Project staff

Meteorites group blog

  • The bits of dust that fill up Space: first look

    Museum scientists Ashley King and Anton Kearsley have co-authored an article published in Science on 14 August 2014 on the first laboratory analysis of interstellar dust grains.Have you ever wondered what exists beyond the solar system? Most people t...
    Fri, 15 Aug 2014 09:48:59

  • 150 years of the ancient Orgueil meteorite

    As well as keeping you informed about our research we're going to use this blog to let you know more about our meteorite collection, especially the ones that aren't currently out on display.  All of us in the meteorite group are off to Casablanc...
    Thu, 14 Aug 2014 09:26:13

Supported by

Glossary

Basalt
A dark, fine-grained volcanic rock, formed when lava cools relatively quickly.

Anorthosite
An intrusive igneous rock, usually light-coloured and consisting primarily of plagioclase feldspar.

D/H ratio
The ratio between deuterium (heavy hydrogen) and hydrogen in natural waters and other fluids. It reveals information about the origin and geological history of the fluid.