Skip navigation
You are here: Home > NaturePlus > Blogs

Blog Posts

Blog Posts

Items per page
1 2 3 Previous Next
0

Advances in DNA sequencing technology are occurring at an incredible speed and Kevin Hopkins is one of the Museum's Next Generation Sequencing Specialists working with the sequencing technologies used at the Museum to produce relevant data for our Microverse research.

 

"The challenge is being able to bring together the technology, often developed in biomedical settings, and the samples at the Museum, where limited and often damaged DNA from specimens is the only chance we have of sequencing them. My job involves designing methods that work for our unusual samples, extracting DNA and producing sequencing ready samples from it, and running our MiSeq and NextSeq next generation sequencing platforms."

 

P1060250.JPG

Kevin Hopkins is a Next Generation Sequencing Specialist at the Museum.

 

What is DNA sequencing?

DNA sequencing is the process of reading the order of nucleotide bases (adenine, guanine, cytosine and thymine) in a particular strand of DNA. Sequencing can be used for many different applications, such as defining a specific gene or a whole genome. The best way to sequence DNA is in sections; this is because there are a number of challenges to sampling the whole genome of a species in one go.

 

There is so much data within a genome that it takes an incredibly long time for any sequencing machine to process the information. In the Microverse project we are analysing short strands of DNA. At least 60 samples are loaded into the sequencer at a time and the analysis takes a total of 65 hours. If we were to analyse the whole genome rather than smaller parts, it would take a considerably greater amount of time, but luckily we don't need to do it for The Microverse project.

 

Another challenge for sequencing can be old DNA that has been degraded into very short sections, in this situation it is difficult to gain enough DNA from all the microorganism in the samples, to study the community composition. To avoid this in The Microverse project, we asked the schools to return the biofilm samples in a DNA preservative to minimise the degradation of the DNA.

Lab work

When Kevin receives the samples from Anne, the lead researcher on the project, he performs two quality control checks before loading them into the DNA sequencer: these are the concentration of the samples and the average DNA strand length. It is important to know both of these factors as they allow us to estimate the number of DNA fragments that are in each sample.

 

P1060254.JPG

We are using the Illumina MiSeq machine to sequence The Microverse samples.

 

The equipment that Kevin uses to sequence DNA is an Illumina MiSeq which can sequence up to 75,000 samples per year. Having equipment like this allows scientists at the Museum to carry out research such as looking at plant DNA to reveal the history of their evolution in relation to climate change, and using molecular work to benefit human health by understanding tropical diseases such as leishmaniasis, as well as exploring microbial diversity in soil, lakes and oceans.

 

During DNA sequencing the DNA double helix comprising two strands of DNA is split to give single stranded DNA. This DNA is then placed into a sequencing machine alongside chemicals that cause the free nucleotides to bind to the single stranded DNA. Within this sequencing cycle when a nucleotide, which is fluorescently charged, successfully binds to its complementary nucleotide in the DNA strand (A with T and vice versa, G with C and vice versa), a fluorescent signal is emitted. The intensity and length of this fluorescent signal determines which nucleotide base is present, and is recorded by the sequencing machine. The sequencer can read millions of strands at the same time.

 

Why is this important?

 

DNA sequencing is vitally important because it allows scientists to distinguish one species from another and determine how different organisms are related to each other. In the Microverse project we are using the sequencer to identify the taxonomic groups of the microorganisms in the samples that you have sent to the Museum.

 

Katy Potts

 

Katy Potts is one of the trainees on the Identification Trainers for the Future programme, who is based at the Angela Marmont Centre for UK Biodiversity. Alongside her work on the Microverse project she is developing her skills in insect identification, particularly Coleoptera (beetles).

 

If you are taking part in the Microverse project the deadline for sending us your samples is Fri 29 May.

0

We take a diversion this week from the Microverse and our newest project, Orchid Observers, to introduce one of the projects that wouldn't get anywhere without the general public reporting sightings, the UK Cetacean Strandings Investigation Programme (CSIP). Cetaceans are the infraorder of marine mammals that includes whales, dolphins and porpoises, and the Museum has been involved in recording their strandings on UK shores for over a century. So it's over to Rebecca Lyal, Cetacean Strandings Support Officer at the Museum, to introduce the project and what she does as a part of it.

 

Warning: You may find some of the images that follow upsetting as they are of stranded and injured animals.

 

The CSIP was created in 1990 to unite the Museum with a consortium of interested parties to formally investigate the stranding of any cetacean, seal, shark and turtle upon the UK coastline. The Museum has actually been recording strandings since 1913 when the Crown granted it scientific research rights for the collection of data on the 'fishes royal'.

 

The first recording was a Cuvier's beaked whale that stranded in Northern Ireland during the summer of 1913. Since then there have been over 12,000 logged reports of whale, dolphin and porpoise strandings, that have ranged from the mighty blue whale to the common harbour porpoise, and even a rogue beluga whale found in Scotland.

 

CBW IMAGE_DOE Marine Division2.jpg

A stranded Cuvier's beaked whale.

(Photo credit: Department of Environment, Marine Divison, Northern Ireland)

 

On the eve of submitting this very blog entry I was contacted via London Zoo - a CSIP partner - with a report of a common dolphin found dead after being stranded in Burnham-on-Sea in Somerset. As soon it was confirmed that someone could help me move an animal weighing upwards of 100kg I jumped into the car and followed the afternoon sun westwards.

 

Dolphin.jpg

Common dolphin found stranded in Burnham-on-Sea.

 

A few hours later I arrived at a blustery Sedgemoor council depot where amid a multitude of dustbins and trucks was the dolphin. It was female, roughly 170 cm in length, and appeared in 'good condition' (i.e. it had suffered minimal decomposition), the latter being crucial to making an accurate assessment for the cause of death.

 

For animals smaller than around 2 metres in length, I can transport them to London Zoo for a post mortem in the back of the car (with the back seats pushed down of course…) so our first job was to wrap the specimen in a large polythene bag to protect it from immediate damage and shield the car from any leaking wounds.

 

With a fair amount of careful heave, ho-ing she was settled in the boot and resembling a slightly malformed Christmas cracker. Like with any stranding, I am extremely grateful for those who help with this strenuous and often fairly messy part, so my sincere thanks go to those at Sedgemoor council who assisted with this collection.

 

Dolphin in car.jpg

Once wrapped in polythene, the dolphin can be safely transported to London Zoo for an autopsy.

 

Upon returning to London, I took the dolphin to the fridges at London Zoo where she'll be taken for a post mortem. During this procedure, a sample is taken of each organ, as well as one of the ribs and any unusual parasites found. It is also examined for unusual markings or damage that could have been caused by predation or unnatural damage. Watch this space for an update on the results…

How you can get involved

If you find a dead, stranded cetacean, seal, shark of turtle, please contact the CSIP hotline (0800 6520 333) and leave your name, number and as much detail about the stranding as possible (location and date found, species - if you know it - and the overall length and condition of the animal.)

 

I hope to provide a guide to identifying different species in a future blog post.

 

Rebecca Lyal is the Museum's Cetacean Strandings Support Officer, one of the partnership organisations of the CSIP. She completed her undergraduate degree in Marine Biology at Newcastle University and joined the Museum as the strandings officer in August 2014.

 

Jade Lauren

0

How the dinosaurs did it - Brian Switek talk on 15 May 1600

 

Brian Switek is a well-known science writer and blogger, and author of the best-selling popular science book 'My Beloved Brontosaurus'. He will be giving a talk in the Flett Theatre at the Natural History Museum in London on the afternoon of Friday 15 May 2015 from 16.00 entitled 'Big Bang Theory: how the dinosaurs did it'. The talk is free to attend and open to all. Tea and coffee will be served after the talk.

 

Dinosaurs are endlessly fascinating. What they looked like, how they moved, what they ate, and innumerable other questions keep us going back to their bones. But there's one delicate subject that doesn't get quite as much attention as the others in books and museum halls - how did dinosaurs make more dinosaurs? In a special NHM talk, science writer and amateur palaeontologist Brian Switek will reveal what scientists are learning about how dinosaurs made the earth move for each other, from the evolution of sexy ornamentation to new investigations into how dinosaurs may have mated.

 

Contact Lil Stevens for details

0

The rich warbling song of the blackcap has welcomed us into work over the past 2 weeks! (you can hear an Eurasian blackcap, Sylvia atricapilla, as recorded by Patrick Aberg here). Not only that but we've had robins nesting just above the threshold of our shed with the accompanying chatter of baby birds anticipating food, holly blue butterflies visiting clusters of fresh holly flowers, sightings of orange tip, brimstone, peacock and speckled wood butterflies, tadpoles in the main pond, the occasional glimpse of a fox cub, and many more signs that Spring has well and truly sprung.

 

20150508-1. Speckled Wood Pararge aegeria on false brome.JPG

A speckled wood (Pararge aegeria) resting on false brome - one of its larval food plants.

 

The mosaic of ground flora throughout the different habitats in the Garden is changing by the day with a particular blue haze and glorious scent of bluebells in the woodland areas.

 

20150508-2 Bluebells in our woodland glade Hyacinthoides non scripta.JPG

Bluebells in our Wildlife Garden.

 

Note the spread compared to 12 years ago,  below,  when the woodland glade was less open than it is today.

 

20150508-3. woodland glade 2003 1.jpg

Woodland glade in 2003.

 

But how many of them are the native British species (Hyacinthoides non-scripta) rather than hybrids or the invasive Spanish bluebell (Hyacinthoides hispanica)? The scented plants for sure, but what about their relatives?

 

Museum Botanist, Fred Rumsey explains some interbreeding:

 

"It's that time of the year again when our woods turn azure with one of our favourite wild-flowers. The cool dry winter has held things back; results from the Museum's online survey on flowering times has shown that over the last few years flowering has in some years commenced almost a month later than in some others, the variation making predictions as to the effects of global warming more difficult.

 

For some weeks the show has been building in the Wildlife Garden, where, in spite of our best efforts, the majority of our plants show the influence of Spanish bluebells. In this respect our Garden is typical of urban gardens throughout Britain.

 

The two bluebells are genetically very similar with their distinctions maintained only by their geographic isolation, because they interbreed freely where they meet and the vigorous hybrids are confusingly intermediate in all respects.

 

20150508-4 MG_2871.JPG

Spanish bluebell Hyacinthoides hispanica in an urban garden in south London.

© Naomi Lake

 

Three hundred years of British gardening has undone several thousand years of glorious isolation - Pandora's potting shed door can't now be closed but we can all act responsibly to prevent further spread into the truly wild places as yet unsullied by the paler-flowered, scentless, blue-pollened invader. In the meantime I will still appreciate the spectacle in our Garden, they may not all be 'pure' but they are still beautiful!"

 

20150508-5  bluebells Hyacinthoides non-scripta.JPG

More bluebells in our Wildlife Garden.

 

Thank you Fred! You can hear more from him on the main differences between bluebell species in the video on our website.

 

And in the past week I have been out and about in the woods admiring pure blooming bluebells and contributing to the Museum's bluebell survey. Here are some May Day highlights from woodland near Ashford in Kent:

 

20150508-6. 2015 Bluebells 005.jpg

A magnificent display of bluebells in Hunt's Wood, near Woodchurch

© Peter Buckley

 

20150508-7. 2015 Bluebells 005 (2).jpg

Another brilliant display - something for us to aim for in our own Wildlife Garden.

© Peter Buckley

 

You too can help us with our research by contributing to the Museum's bluebell survey.

 

And finally, a small diversion: although our fox cubs are shy, the adult male is more relaxed, spending time around the pond banks to the delight of our visitors, but not so to our nesting moorhens.

 

20150508-8.fox.jpg

Our male fox relaxing in the Wildlife Garden.

© Daniel Osborne

0

Last month a new temporary display featuring some of our foraminiferal specimens and models was placed in the Museum gallery. This features real microfossils on one of our foraminiferal Christmas card slides alongside 20 scale models, part of a set of 120 models generously donated to us last year by Chinese scientist Zheng Shouyi.

 

P1050395_blog.jpg

Senior Microfossil Curator Steve Stukins admiring some of the specimens and models on display and thinking "this is a much better place for them than the Curator of Micropalaeontology's office!"

 

As a curator dealing with items generally a millimetre or less in size I have not often been involved in developing exhibits other than to provide images or scale models like the Blaschka glass models of radiolarians. Displaying magnified models is one of the best ways to show the relevance of some of the smallest specimens in the Museum collection, the beauty and composition of foraminifera and to highlight our unseen collections.

 

This display features one of our most treasured items, a slide with microscopic foraminifera arranged in patterns to spell out the words 'XMAS 1912'.

 

1912_slide_closeup_blog.jpg

A festive slide of foraminifera created by Arthur Earland.

 

This was created by Arthur Earland for his long time collaborator Edward Heron-Allen. A previous blog tells of the sad end to the relationship between these two early 20th Century foraminiferal experts, a story that featured in the Independent under the heading 'shell loving scientists torn apart by mystery woman'.

 

The slide itself is amazingly beautiful under the microscope and a close up view (see above) is shown on the back board of the exhibit. The naked eye can show the arrangement of the specimens on the slide but cannot really pick out the beauty of the foraminifera. I was at a collections management conference about a year ago where it was suggested that the public feel duped by seeing models rather than real specimens on display. In this instance, the scale models serve to show the beauty as well as to enhance the relevance of the real specimens on display.

 

Photo9614-dOrbigny_Foraminiferal_models-001_blog.jpg

Foraminiferal models by Alcide d'Orbigny that also feature in the display.

 

French scientist d'Orbigny (1802-1857) was the first to recognise that creating models was a good way to show his studies on the foraminifera. These models were created to illustrate the first classification of the foraminifera, a group that at the time were classified as molluscs.

 

P1050391_blog.jpg

A selection of Zheng Shouyi's models of foraminifera.


Chinese scientist Zheng Shouyi was inspired by d'Orbigny to create models of foraminifera to illustrate her work and to show the beauty of the Foraminifera. Of the 120 models she donated to us in 2014, 20 have been carefully selected for this exhibit. The selection shows a variety of different wall structures, a range of shapes, species for which we have the type specimen as well as some species of planktonic foraminifera relevant to current research at the Museum. Zheng Shouyi is also famous for encouraging and overseeing the production of the world's first foraminiferal sculpture park in Zhongshan, China.

 

If you are able to pop into the Museum, please come and see this free display. It is situated just after the exit from the dinosaur exhibition on the opposite wall to the dino shop. We can't promise any giant scuptures but I'm sure that you'll agree that these models certainly illustrate the beauty and help to explain the relevance of some of the smallest specimens hidden behind the scenes at the Museum.

0

The Museum's Patron, the Duchess of Cambridge, gave birth to her second child just a few days ago, so the Museum's online shop has been gearing up with gift ideas for newborns. With bibs, toys and T-shirts it's never too early to introduce your littlest to the prehistoric world. We also take a look at some of the incredible facts about the first six months of your little hatchling's life.

 

Dinos and rompers for blog.jpg

Knitted dinosaurs suitable from birth and romper suits for your little ones to grow into.

 

Amazing baby facts

Here's our favourite things about newborns.

They learn words while still in the womb.

According to research from the University of Helsinki, your newborn will recognise sounds it heard whilst in utero for up to four months after birth. This includes words, the theme tune from mum's favourite TV programme or just mum's favourite song.

They're programmed by evolution to put things into their mouth.

It seems that their annoying habit of placing anything and everything in their mouths starts right from birth. It's an evolutionary instinct that they're born with to make sure that they get enough food.

 

T-shirts for blog.jpg

Baby T-shirts for your tiny terror.

 

They have incredibly strong reflexes

That amazingly strong grip that your baby has is due to a reflex. It's strong enough to support their entire body weight.

They cry in your accent

Researchers from Germany found that babies pick up elements of their mother's accent while in the womb. Their cries reflect the inflection and cadences of your mother tongue. While studying the differences between the cries of French and German babies, researchers found that the cries of French babies had a rising accent while the cries of German babies had a falling inflection.

 

Dinky rattles for blog.jpg

These funny, friendly dinosaurs contain a rattle that will keep little hands amused.

 

They can't produce tears

You may be surprised with the amount of crying that your baby does that they don't actually produce tears. This is because of the fact that their tear ducts are still developing, so while they can produce enough moisture to protect baby's eyes they can't produce enough to form actual tears.

They have more tastebuds than you.

And not just on their tongue... these extra tastebuds cover the roof and sides of their mouth. They have the ability to taste sweet and bitter from birth, but they won't develop a sensitivity to salty tastes until they are about four months old.

 

bibs for blog.jpg

Bibs to label or dress up your 'little monster'.

 

They're born with a fully developed inner ear.

It is the only sense organ that develops to its adult size in the womb. It reaches it's full size around week 20 of pregnancy and it is from this point that the foetus will start to respond to sound.

One baby is born every eight seconds.

That's according to the United States Census Bureau, although other statistics claim that it's more like one every two seconds. However you look at it, that's a lot of babies.

Personalised gifts

 

Baby personalised for blog.jpg

These personalised baby T-shirt and baby onesie are the perfect way to give your little one a real dinosaur name.

 

Our range of personalised gifts include a baby T-shirt with a Stegosaurus and a baby onesie featuring a Diplodocus. Simply enter baby's name decide on their dinosaur suffix and enter the year that they were 'discovered'. The perfect gift customised especially for your baby. We hope to be printing #Charlottsaurus soon.

 

Visit the online shop for hundreds of gift ideas that support the Museum's work.

0

The above date marks the sad passing of one of the Museum’s tiniest volunteers: In early February I discovered Beetah, my Carabus violaceous lying still on her coconut substrate, and to be honest, a little dried out.

 

Beetah_blog_01_openingSelfieweb.jpg

My little pet worked hard in life to inspire the public with entomological wonder of what living gems can be found in local parks, let alone the wider world, so I think it’s only fair to take time and reflect on her life and service upon her passing.

 

Beetah_blog_02_liveCloseUp.jpg


Obituary: This Carabus violaceus specimen was collected live while Hillery Warner was taking a walk in Nonsuch Park with her 1 ½ year old son, Dominic on 29/08/2013. Dominic christened the specimen "Beetah" on the spot and it was kept as a family pet until its death of natural causes in early 2015, at which point it was brought to the Museum to join the collections on 11/02/2015. 

 

Beetah led a lavish life for a ground beetle, feasting on fish cakes and the finest chunks and jelly from packets of cat food. She apparently reproduced while in captivity and two of her offspring are also in the collection.  While not an official front of house Museum employee, Beetah wore her public-engagement-purple elytral margins with pride, inspiring visitors at Science Uncovered 2013 and 2014. She also acted as an entomological ambassador during National Insect Week, 2014 where she met artists and UK celebrity Jonathan Ross. While the lights have left the multifaceted ommatidia of her compound eyes, she may yet "see" another Science Uncovered as she continues her service to the Museum in death as she did in life, entering her new role as museum specimen.

 

I found my beetle back in 2013 in a park near my home while walking with my then 1 ½ year old son. As I keenly showed my son this lovely large black beetle with iridescent purple pronotal and elytral margins, he enthusiastically named it ‘Beetah’ and I detected some bonding going on, so I decided Beetah would live with us as a pet. I initially added a snail or two to her tank but soon discovered she was much happier to dine on my husband’s fish cakes. In fact, she ate so much fish cake that I noticed not long after that single meal that she had plumped up so much that her plural suture stretched enough that the underlying membrane was showing. I thought she was just fat.

 

Some time later there were a number, (at least 5), carabid larvae running around the tank (I’m sorry I called you fat, Beetah). How did this happen with just one beetle? In short, it didn’t, but insect reproduction is amazing and entomologists never pass up an opportunity to talk a bit about genitalia!

 

 


The christening of “Beetah”:   Almost as good as the whole Mofasa/baboon/Simba thing from that ’90’s movie.

 

Beetah_blog_04_Carabus_spermathecaweb.jpg

Internal female genital structures of carabid species Badister amazonus (Erwin & Ball, 2011).


Female insects have an internal genital structure called a spermatheca.  Upon mating, sperm is stored in the spermatheca rather than going straight to the eggs for fertilization.  The release of sperm from the spermatheca is under hormonal control and so the female can wait until conditions are ideal for reproduction before releasing the sperm from this structure to fertilize her eggs.  This could mean waiting to find a suitable insect host for a parasitoid wasp, or finding enough fish cake to suitably supply the eggs with nourishment for pet Beetahs'.  Lady insects have quite a lot of control over this and scientists have reported carabids going for as long as 10 months without contact with males before ovipositing (Gilgado & Ortuño, 2012) and honey bees can store sperm for over 3 years (Gullan & Cranston, 2000).


While both mother and larvae enjoyed cat food, I noticed that the larvae were active and fed during the day while mum was nocturnal.  (I often described having a pet carabid like having a 6-legged carnivorous hamster due to the audible night time scrabbling sounds coming from her tank).  This division of activity surely reduces the likelihood of intraspecific predation in nature.  (Metamorphosis is a generally fantastic strategy to reduce intraspecific competition).  I won’t comment on what happened to the larvae.  Truthfully, I don’t know for sure (ref. 1).  I’ll just let the mystery be.

 

Not long after that exciting event, Beetah began her work as and Museum volunteer.  Her first public outreach event was Science Uncovered, 2013 where she assisted Dr. Eggleton and Dr. Inward in delighting the public with the wonders of soil associated invertebrates.  In 2014 she participated in both a second Science Uncovered and National Insect Week activities where she met artists and an English television and radio presenter named Jonathan Ross, among other visitors.


I did rather wonder if she might make it to a third Science Uncovered (alive) but alas, she saw her last sunsets in early 2015. So what did I do with the husk of my fallen friend?  Put the kettle on for her, of course.  One of the quickest ways to get a desiccated beetle specimen relaxed for mounting is to pop it into warm water (ref. 2.)  So after a few minutes of steeping a Beetah tea, I pulled her out of the hot water, wrapped her in moist tissue, and took her to work.

 

Beetah_blog_06_beetleTeaweb.jpg

Steeping beetle tea prior to mounting.  These are Rothschild bequest beetles I prepared from our dried accession material.

 

Beetah_blog_07_mountingBeetahweb.jpg

Beetah all set on her mounting board.


Once at the Museum, I pinned and set Beetah with extra-special care - after all, a Beetah’s work doesn’t finish just because haemolymph stops pumping through her dorsal vessel (or “heart”- but insect circulatory systems are very different to vertebrates’.  See ‘Insect Circulation in Short, below).  Oh no, I fully expect her to continue public outreach duties long after death- no rest for the dead in entomology! Normally, I would tuck a specimen’s antennae a bit closer to its body to make them less vulnerable to breakage and save them best for taxonomic preservation and study, but Beetah is a common species, already identified and described long ago so setting her for a really attractive dorsal habitus with no limb overlap won out over supreme specimen protection.

 

Once set out nicely and (re)dried, it was time to label her up and database her.  We here at the Museum hope to digitize our entire collection.  With 80 million objects, this is no small ask so we’re coming up with snazzy ways to do this as efficiently as possible, but Beetah, being a single and super special specimen, I entered into our digital catalogue individually, manually, myself.  Her unique identifier is now and forever 1681080.  The data matrix attached to her pin jutting out clearly visible from above can be read by computers and smart phones to quickly access all her collection information.  The details of where and when she was collected are now digitally stored along with her species determination, (obituary), and where she’s kept in our cavernous labyrinth of cabinets so she can be easily retrieved for, oh, I don’t know maybe I will make her make an appearance for her third Science Uncovered in September….

 

P.S.- If my son asks any of you where Beetah is… she’s at the Museum.  Just leave it at that.


Insect Circulation in Short: One of the more basic zoological divisions in the animal kingdom is that of deuterostomes vs. protostomes.  These terms roughly translate to “second mouth” vs. “first mouth”.  When the first divot forms in the blob of cells that eventually grows into an animal, it is destined to either become a mouth, or a bottom.  Our cell-blob-divot becomes an used-food exit route, so we’re deuterostomes.  Insects’ divot becomes a mouth.  So right from the start insects couldn’t be much more different to us.

 

Beetah_blog_10_deuteroVSprotoweb.jpg

A rather useless diagram showing the end destination for the blastopore in both protostome and deuterostome blastocysts.

 

Other equally fundamental differences in development mean that while our nerve chord is in our back, insects’ are in their chests.  Our heart is in our chest. Insects’ “hearts” are in their backs.  But the location of an insect heart isn’t the only huge difference to our circulatory system.  Our blood carries nutrients and oxygen to cells, but insect blood only carries nutrients.  Our blood is closed into veins, arteries, and capillaries.  Insect blood washes more or less freely around the body cavity.  The insect “heart” is basically a tube with muscles and valves that takes in haemolymph from around the midgut of an insect where nutrients from digested food diffuses into the “blood” and then pumps it into the head where it’s released to freely wash over the all-important primary ganglion (brain) and then wishily washily work its way back to the tail end of the insect; feeding cells and picking up waste on its way.


Terms Badly Explained


Desiccated- Dried up.  Because scientists decided one word with 4 syllables is more efficient communication than two one-syllable words.
Dorsal habitus- The view normal to the lateral plane of the animals’ body.  Whatever that means.
Elytral- Of the elytra, which are the hard forewings of a beetle.
Haemolymph- Insect blood.  It’s not Haemoglobin because it doesn’t bother with oxygen-carrying globulin proteins.  There are exceptions- some larvae in oxygen deprived environments have proper haemoglobin but this is a badly explained term, not another blog topic.
Intraspecific- Within a species.  Interspecific would be between species.  Like interstates are roads that travel between states.  Intrastates would be roads that don’t cross state lines.  Like a roundabout in the middle of Kentucky.  I’m clearly an American.
Parasitoid- Like a parasite but much much more dark and disturbing.
Plural Suture- Where the top tough exoskeleton bits meet the bottom exoskeleton bits on the side of
an insect’s belly.  The side-seam.
Pronotal- Of the pronotum.  Which is the first notum.       (Which is the top part of the thorax.  The thorax is divided into three sections).
Spermatheca- a copulatory receptical.
Substrate- Stuff on the ground.  Dirt.  Leaves.  Gravel.  Bark.  Sand.  And such.

 


Ref 1. Two of the larvae joined the collection.
Ref 2. This works for any insect that isn’t overly hairy or scaly but is bad for DNA.

 

References:
Erwin T, Ball G (2011) Badister Clairville, 1806: A new species and new continental record for the nominate subgenus in Amazonian Perú (Coleoptera, Carabidae, Licinini). ZooKeys 147: 399-417. doi: 10.3897/zookeys.147.2117

Gilgado, J. D., & Ortuño, V. M. (2012). Carabus (Oreocarabus) guadarramus La Ferte-Senectere, 1847 (Coleoptera, Carabidae): first instar larva and reflections on its biology and chorology. Animal biodiversity and conservation, 35(1), 13-21.

Gullan, P.J. & Cranston, P.S.. (2000) Insects: An Outline of Entomology, 2nd edition. Blackwell Science, 502 pp.

0

Some time ago I got a tip-off from my regular library source about the existence of a mineralised human skull in our collection. All she could tell me was that a scientist had been down to consult a book that contained some information about it; but she wasn't sure what book it was.

 

Armed with the scientist's name, and with visions of the crystal clear skulls of ancient Mesoamerican - and more recently, Indiana Jones - legend circling my mind, I set off to find out more.

 

But like the coded letter from Indy's old friend Oxley, which lead him to a Peruvian psychiatric hospital, and the interpretation of symbols scrawled therein which lead to the subsequent discovery of the grave of a sixteenth-century Conquistador which contained a crystal skull, my library tip off set in motion an epic series of twists and turns I had to navigate in order to track down our specimen and record its story in this here blog.

 

After months of emails and answer phone messages, conflicting schedules and workloads that didn't permit a spare moment to meet, I received an unexpected call from a scientist on the coast of Cornwall.

Hi, it's (Minerals Collection Manager) Mike Rumsey here. I'm on holiday right now, but I've got a 15 minute walk by myself back to my car so I thought I'd call you to talk about the skull. What would you like to know?

 

Hooray, I cheered internally, and replied: 'Everything!' And so he began:

It's a Hans Sloane specimen which dates to the foundation of the Museum, and we can trace it back quite a long way. We know that Sloane got it from the collection of a guy called Cardinal Filippo Gualtieri after Gualtieri died in 1728.

 

There's not many things we can trace back that far in the Mineral Collection.

 

It's a bit of a curiosity, really. It's supposedly the skull of someone who had fallen into the Tiber river in Rome. It's covered in a deposit called travertine.

 

Sadly for my crystal skull fantasy, Rumsey revealed that the skull is in fact a creamy limestone colour (not clear), and contains no crystal points (and probably never did). But, he continued:

It's got what looks like a handle attached to it. That sounds a bit morbid, but there's no evidence it was ever used as a drinking vessel. We think it's a rib bone of the same skeleton the skull came from.

 

Scientifically, we've not really done a great deal of work on it, although quite recently it was CT-scanned. I think they did find out that the skull is still in there, not completely replaced, which is quite interesting.

 

mineralised-skull-in-book_700_2.jpg

An image of the skull from the late eighteenth-century book Museum Britannicum, being an exhibition of a great variety of antiquities and natural curiosities belonging to the British Museum, by Jan van Rymsdyk. This was the tome that sparked the original tip-off.

 

mineralied-skull_700.jpg

A surface scan of the mineralised skull, which once belonged to Sir Hans Sloane.

 

Indeed, Farah Ahmed, manager of the Museum's X-Ray CT Scan Facility, confirmed Rumsey's belief.

Of all the skulls I've had come my way, this is probably one of the most well preserved. And considering the fact that you couldn't see it, and we had no idea what level it might have been preserved at underneath  - it's pretty special. The whole skull is intact, with only a small bit of damage above the nasal cavity, which is surprising, considering it must have had a bit of a bashing.

 

That's a rib going through its mouth. We think the whole body went in, and then the commotion and the motion of the river over time broke it up and just that rib got lodged there.

 

mineralied-skull-scan_700.jpg

An internal image showing the preserved and intact skull, and rib bone, under the travertine deposit.

 

The mineralised skull is currently on long-term loan to the British Museum, and can be seen on display in the King's Library, home to their permanent Enlightenment exhibition.

 

It is perhaps fitting that this specimen is no longer (at least for the next 25 years or so) at the Museum, as I am about to leave the Museum, too. The completion of my quest to track down, and uncover the history of, our mineralised skull marks my final Behind the Scenes blog before I move on to career pastures new.

 

Thanks for reading.

1

OK, I have decided to create #Worldrobberflyday. All the time now, we hear that this large mammal or that large mammal has a 'day', and that got me thinking. Buglife have an invertebrate of the month, but even they are not very often the lesser-known insects, including the flies.

 

And I wanted global. Let the world celebrate! Why is it always the large stuff or the pretty (and, in my opinion, slightly less important) species? So I thought about it and decided it was about time that we championed more aggressively the rights of the small and endangered flies. These creatures are some of the most charismatic animals on the planet. The robberflies, or Asilidae, are truly worth celebrating for their looks, for their behaviour, for their good deeds to us, and because many of them are threatened.

 

The UK boasts 28 species of Asilidae (OK, so that's not a lot in terms of flies, but hold on – we have only 30 native terrestrial mammals, of which 17 are bats and 2 are native marine mammals). Globally there are more than 7,500 species, and as such, it is one of the largest families of insects today. In fact Torsten Dikow, a world expert on this group, has them as the third most speciose group of diptera. This is a group, therefore, that has a large impact on the environment in which they live.

 

Asilidae are Brachycerans (Fig. 1), which are the more advanced and robust flies. Asilidae are known from the Jurassic era, but some of the more important finds are from the Cretaceous, including those from the Crato Formation of north-eastern Brazil (approximately 112 million years old). This site is truly extraordinary in terms of the invertebrate remains that were found there (and just another reason for me to get back to Brazil!).

 

taxonomy.jpg

Figure 1. Phylogenetic arrangement of Diptera showing the more advanced Brachycerans and the position of the Asilidae (robberflies) within it.

 

It was again Linnaeus, or Linne, who described these flies in his 10th edition (1758) Systema Naturae when he erected the genus Asilus. Within this, eleven species were described and then a further four were added in the 12th edition. You may be unsurprised to know that most of these are no longer in the original genus! Ten have been moved to other genera, three we are unsure of due to the original descriptions being vague, so that leaves only two in the genus.

 

However, the species Asilus crabroniformis, commonly called the hornet robberfly in the UK – and the type species of the family – still sits within this genus in all its magnificence. The division of flies into different families came later with Latreille, a very eminent entomologist who tried to put some more organisation into the entomological hierarchy in 1802. Since then we have increased the number of species and have split the family into many subfamilies –14 in fact (Fig. 2) But as regular readers know, Dipteran taxonomists are still not satisfied and expect more movement in the future.

 

subfamilies.jpg

Figure 2. Subfamilies within Asilidae (image is Tigonomiminae © Thomas Shahan).

 

Even still, you can comprehend how much work has gone on into understanding the relationships within this family so far.

 

Moustaches and mouthparts

 

So why are people interested in these flies? Well once more, this is a family of flies that rock! And these rock harder than most. All armed with moustaches and powerful piercing mouthparts, these predators are aptly named, as they truly are the most vicious and effective aerial predators. These flies are venomous, probably both as adults and as larvae (although we know so very little about the offspring). The adults are able to catch, then sedate, their prey whilst on the wing, suck out the contents and then drop the husk of what was once a living breathing entity. It's almost poetry.

 

And to be fair, to catch these little predators you often have to become a predator yourself. There is no majestic leaping around the countryside, freely swinging your nets with wild exuberance: instead you must 'become the fly'. You stalk it; determine where it rests and then strike. If you are me, this is often followed by a squeal of delight or a wail of despair. I once spent a glorious afternoon on one of the Isles of Scilly at the beach (obviously working very hard) trying to stalk these flies. My volunteer and I tried to work in unison hunting them, and I could almost hear the flies mocking us…

 

The adults are most active during sunny, hot conditions. Again, another reason for loving flies – they have an affinity for the nicer weather conditions.

 

Although these flies range a lot in size, from 2mm to 6cm, they all share distinctive features that help identify the family. The adults have enormous eyes, which is one of the many tools that make them such efficient predators. And it also helps us recognise this family easily. The bulbous eyes and the distinct dip between the two eyes are very characteristic (see Fig. 3). They can swivel their heads around and their eyes can see what's going on behind them as well.

 

eyes.jpg

Figure 3. My, my... what big eyes you have...!

 

Some of them scout amongst the grasses, their rapid wingbeat enabling them to turn whilst hovering. These truly are the stealth-bombers of the insect world.

 

The leptogastriniiae are the skinniest of the Asilidae, with very long bodies and legs. They use these long, gangly first two pairs of legs to catch their prey whilst – we think – using the third pair to stabilise themselves. Not all actively scan like this: some will sit and wait, only darting out to impale their prey when they are ready. If fact, there are several different ways in which they hunt and, as with all good scientists, someone has devised a terminology for all of these (Fig. 4)

 

hunting.jpg

Figure 4. Lehr (1979) from the Geller-Grimm Asilidae site.

 

For that is another characteristic of this group – a well-formed, stout beak often hidden in a luxurious moustache or, more correctly termed, a mystax (Fig. 5).

 

mouthparts.jpg

Figure 5. Mouthparts of a robber fly (Brachycera: Asilidae). an=antenna; cl=clypeus; ip=hypopharynx; li=labium; ls=labrum (epipharynx); m=mystax; ms=maxillae; oc=eye; pm=maxillary palpus © Giancarlo Dessì. Licensed under CC BY NC SA 3.0 US.

 

It is the needle-like hypopharynx (Fig. 5) that pierces their prey. This is not for the faint-hearted, as they often try and pierce the soft parts of the insect, such as the neck or sometimes the eyes. They have this moustache (Mystax – Fig. 5) to help protect their mouthparts from the flailing prey.

 

They don't have to flail for long, though, as the fly injects saliva that contains nerve toxins that paralyse the prey, and proteolytic enzymes that dissolve the insides. They are nasty for insects, spiders, and occasionally a very unfortunate hummingbird, but apart from giving a nasty jab, they are not dangerous to humans. Research done by Adamovic in 1963 found that injecting robberfly saliva into invertebrates kills them instantly, but they never inject venom into humans. There are several researchers in the Natural History Museum who are now studying the venoms within these flies, so watch out for future Museum publications to follow what is happening in this field.

 

But this leads me to one of the first reasons that these flies are very important. It's because they are such good predators. Within the UK, between 1930 and 1933, Hobby produced a list of the prey records (Fig. 6).

 

feeding.jpg

Figure 6. Hobbies lists from Stubbs and Drake 2014.


We have spent the last century working out the prey species and now have a greater understanding of the potential impact these flies can have in helping control populations of species that we often consider as pests – with aphids being a classic example. Although they are opportunistic species, they can have an impact on the overall densities and therefore become the gardener's friends.

 

Flirty flies

 

So let's move on to courtship. As with most creatures, some do, some don't; with some species the males just grab, while others put a fair amount of time and effort into it and have different modifications on their bodies to both attract the opposite sex as well as hold on to them. And it's not just the males that do the flirting. Oh no - there are some females that entice the male.

 

The rather unusual courtship of the British robberfly Choerages marginatus was described by Ian Rabarts in 2009 (paraphrased from Alan Stubbs' rather amusing synopsis on the subject, in his and Martin Drake's book British Soldierflies and their Allies): Firstly the flies recognise that (a) they are the right species, and (b) that they are of the opposite sex (a very good start in most situations to do with copulation leading to fertilisation).

 

Then they check out each other's hunting moves and, if OK, the female stands facing the male in a sort of 'yeah, you'll do' posture. After this, she flies in a slow 'flaunting' circuit (hussy) very similar to that of a prey item (all very kinky). He attacks when he sees her 'shimmer-strip', whereupon she slows down her flight, but flies in an angular pattern. He realises then that this is his lady and adjusts his attack from one of capturing prey to one of copulation.

 

Alan then states in his book: 'Failure [of copulation] results in going back a few steps in the courtship sequence.' A not-unfamiliar event…

 

Bob Lavigne, a collaborator of mine and another international robberfly expert, wrote in 2003: 'It is postulated that courtship first developed when male search flights (which end abruptly with copulation), were consistently unsuccessful.' It sounds so final when it ends with copulation!

 

In fact, reading the literature when it comes to robberfly mating in copulation has been very entertaining. Morgan (1995) records that another species that were just about to do the do were scared off by a sheep! Given the size difference I too in a similar position may have been scared off...

 

But check out Pegesimallus teratodes (Fig.7) – these have amazing structures on their hind legs. These are used in the dance of the males to attract the females –they are indeed the peacocks of the robberfly world.

 

Pegesimallus-teratodes.jpg

Figure 7. Pegesimallus teratodes and its amazing legs.

 

And that is not all that is fantastic about the males. I would be remiss if I didn't mention the genitalia of the males (Fig. 8).

 

Pegesimallus-teratodes-genitalia.jpg

Figure 8. The male Pegesimallus teratodes with his rather impressive genitalia.


And then there are specimens in our collection that we think give us an indication of a courtship story, although I doubt we will ever be able to find out for certain. Take, for example, two specimens of Mallophora infernalis from our collection (Fig. 9). Now, had the female caught the bush cricket and the male had thought:“Excellent! Both food and sex!”? Or, had the male caught the cricket to attract the female? Either way, it was not going to end well for the bush cricket (or in this case for the robberflies).

 

mallophora.jpg

Figure 9. Male and Female of Mallophora infernalis who were caught mid air carrying this bush cricket.

 

So whether there is dancing, waving, differences in wingbeats, or offerings, the end result hopefully is the production of eggs. And blimey, the females have a big range of ovipositors (egg laying tubes) (Fig. 10)!

 

table.jpg

Figure 10. Ovipositors (adapted from Stubbs and Drake 2014).


Now this is where it gets tricky, as we know less about the egg and larval stage than any of the others. And this is the main reason why we should be concerned about these gorgeous creatures – many of the UK species are rare. We have no real idea for many species globally but can only assume that this is the case everywhere. In fact, several of our UK species are protected.

 

However we don't know much, if anything, about many of the species' diet, where they live, development and so on. In Collins' book The Conservation of Insects and their Habitats, he discusses how little is known about the species, despite the fact that they are classed as threatened.

 

Take one of the most charismatic insects in the UK (no bias there) the hornet robberfly Asilus Crabroniformis – a mimic of (you guessed it) a hornet. There is still very little information. Previous work dating back to the 90s states that the eggs were laid in or under the old dung of cows, horses and rabbits, and soil nearby. Maybe the adults (and subsequent larvae) are that flexible in their habitat? The larvae are then thought to feed on dung beetles but again this has only been observed (and not by many authors) during late-stage instars. What do the little ones eat? It is a UK priority species and we need to know more about it. How can we consider conserving a species (if it needs it) if we don't know where it is or what it's getting up to? It's like a wayward teenager.

 

Now, if you want to know more about what is going on with UK robberflies, there are loads of pages giving you what information there is.

There is a nice little piece by naturespot (Fig. 11) featuring some of the UK species, and of course you must check out the Dipterists Forum for all of their information.

 

naturespot.jpg

Figure 11. Nature spot.

 

But what we really want now is information coming the other way. Personal observations in the field, the location of eggs and the like, and species distributions are all critical in ensuring that we maintain and enhance our existing populations.

 

Martin Harvey @kitenet runs the UK recording scheme for these wonderful little animals (See Fig. 12 or visit the website) and you can send all your records to that site. Martin also runs many courses on these as do others in the Dipterists Forum, so sign up and go along to them.

 

screenshot.jpg

Figure 12. The Soldierfly and allies recording scheme, which includes the robberflies.


So there you go - robberflies are amazing, and they do need celebrating. And if you still need convincing here is a little fluffy one to tug at your heartstrings. When asked what is my favourite fly, Laphria flava is at the center of my heart (Fig. 13).

 

Laphria-flava-male.jpg

Figure 13. Laphria flava male.

0

A new and exciting citizen science project has begun and it's time to get involved with Orchid Observers! This research project, in partnership with Oxford University's Zooniverse platform, aims to examine the flowering times of British orchids in relation to climate change.

 

In order to achieve this, we are inviting the amateur naturalist and professional botanical community, alongside nature loving citizens from across the country, to help us collect and sort orchid data.

 

Bog orchid.jpg

The bog orchid (Hammarbya paludosa) is our smallest UK species. It usually grows on mountain peat bogs and can be found from July to August.

 

We want you to go out in the field and photograph any of 29 selected UK orchid species and upload your images onto our dedicated website, www.orchidobservers.org. Flowering times from each of your records will then be collated and compared with the extensive Museum herbarium collection, and data from the Botanical Society of Britain & Ireland (BSBI), totalling a 180-year-long time-series of orchid records.

 

The primary aim is to further our understanding of the impacts of the climate on the UK's flora, using orchids as a model group. The extensive data set that you will be contributing to, will tell us how different species of orchids are responding to changes in temperature and rainfall across the UK.

 

Mike in field.jpg

Get out in the field and support us in our research on orchid phenology.

 

Field work: We are asking observers - like you - to record orchids by simply photographing the flower spike and uploading the image to our website, with a location and a date. To aid you with identifying the orchids, we have painstakingly produced a lavish ID guide (PDF) complete with images, descriptions, flowering times, and distribution maps. There's also a short guide (PDF) for how to take the most helpful photographs for the project.

 

Online work: We have over 10,000 herbarium orchid specimens from around the UK, stretching back over three centuries. In order to calculate any change in flowering times we need you to help us sort through images of our herbarium sheets and transcribe key information such as the species, location and flowering condition. This is one that can be done at home on your PC, or when out and about from a mobile device.

 

Pyramidal orchid.jpg

The Pyramidal orchid (Anacamptis pyramidalis) adds a splash of colour to the alkaline grasslands of high summer. Keep an eye out for it in June and July.

 

If you would like to get involved with the project either online, or in the field, then go to visit www.orchidobservers.org. The orchid season runs from April until the end of September so the first species are starting to flower right now - time to get your camera out!

 

Mike Waller

 

Mike Waller is one of the new identification trainees working at the Angela Marmont Cente for UK Biodiversity. His passion lies in botany and ornithology with a particular specialism in European orchids.

1

In the final post in our series of blogs introducing our new trainees on the Identification Trainers for the Future project we meet Chloe Rose:

 

My name is Chloe Rose, I am 30 years old and have spent the last 10 years enjoying living by the sea in Brighton. After graduating in an Ecology and Biogeography degree I spent a year out travelling in South East Asia and New Zealand, marvelling at the wonderful flora and fauna.

 

Upon my return I began working for the RSPB at the South East regional office as a PA/marketing adminstrator and worked within the wildlife enquiry team. I jumped at the chance of many project opportunities throughout my 2.5 years there, such as project managing the Big Garden Bird Watch, and volunteering where I could at reserve events such as the Big Wild Sleep Out. During my time there I had the pleasure of working with a highly dedicated and passionate team who were devoted to saving nature.

 

Chloe Rose.jpg

ID Trainer for the Future Chloe Rose, whose background is in ecology and biogeography.

 

I have spent the last 8 years studying UK biodiversity, during which time I have volunteered for numerous conservation organisations, assisted in countless biological recordings and, along the way, have developed my identification and surveying technqiues. Some of the more recent work I have been involved in includes: wetland bird counts, corn bunting and nightjar surveying for the Sussex Ornithological Trust, bee walks for the Bumblebee Conservation Trust, great crested newt surveys for Ecological Consultancy, and barbastelle bat monitoring as part of the National Bat Monitoring Programme.

 

20150423 Barbastelle bat NaturalHistoryMuseum_PictureLibrary_036107_IA.jpgA 1905 drawing 'from a dead bat' of a barbastelle (Barbastella barbastellus) in the Museum's Picture Library.

 

When I saw the Identification Trainers for the Future project opportunity with the Museum, I knew that I had to give it my everything. I have found it extremely difficult to come across work since completing my degree, with huge competition and so few jobs it can be easy to become disilluisioned.

 

The training the Museum was offering would provide me with the perfect stepping stone into a career in UK biodiversity, giving me the skills and confidence needed. Whilst preparing for the assessment day, which involved displaying our own projects and revising for the somewhat ominous 'UK wildlife ID test', it re-confirmed my desire to work within this sector and reignited my passion for learning and developing my career.

 

At the end of the traineeship I want to be able to apply the skills gained into bridging the gap in species identification. So I will be trying to find in particular the more priority organisms - the ones vulnerable and which require most attention. I think it's clear to see that I am passionate about our natural world, but I also take great pleasure from passing my knowledge onto others.

 

I look forward to working with the Museum's Learning and Engagement team during phase 4 of the traineeship. During this time I hope to be supported in becoming better equipped in inspiring others about UK biodiversity, especially those who have lost connection with the natural world.

 

There were so many knowledgeable and zealous individuals on the day, I feel extremely lucky to be here, it really is a dream come true. I wish all the other candidates the best of luck with their future endeavours.

 

Thank you Chloe! So there you have it, you have now met all 5 of our trainees in this year's cohort. You will be hearing more from them as their traineeship advances because they will be telling you all about their progress, but for now if you would like to find out more about the traineeships, or the Identification Trainers for the Future project, visit www.nhm.ac.uk/idtrainers.

0

In our second to last post in our series introducing our trainees on the Identification Trainers for the Future project, we meet Anthony Roach. Although Anthony comes from a background in archaeology, he is a very keen amateur naturalist and science communicator, having already worked as a weekend science educator for the Museum.

 

My name is Anthony Roach and I am an enthusiastic and energetic amateur naturalist with a strong passion for inspiring people about the natural world. I was fascinated by material culture and prehistory and graduated as an archaeologist at the Univeristy of Reading in July 2003.

 

Anthony Roach.jpg

ID Trainer for the Future Anthony Roach, whose background is in archaeology and science communication.

 

I have spent the last 9 years in the handling, documentation, interpretation and advocacy of natural science collections (entomology, zoology, geology, archaeology and palaeontology) and inspiring museum audiences by delivering educational workshops and object-handling sessions at Plymouth City Museum and Exeter's Royal Albert Memorial Museum, affectionately known as RAMM.

 

RAMM was awarded 'Museum of the Year 2012' after a major 4 year re-development and between 2007 and 2010 I was given the opportunity to handle, pack and move its complete natural science collections, assist in delivering natural history outreach sessions, wildlife festivals and events and contributed to a touring exhibition called 'Micro-Sensation' about the beautiful and bizarre microscopic world.

 

My career working with natural science collections has shown that I have a strong interest in the natural world, but in my spare time I spend much of my time observing, photographing and identifying wildlife around the city of Exeter and the Exe Estuary in my home county of Devon. I have a strong passion for all wildlife, but particularly birds and invertebrates. I am an avid and enthusiastic birdwatcher following voluntary work as Peregrine Warden with the National Trust in 2006. In 2013 I was lucky enough to travel and work in New Zealand, volunteering for The Papa and Auckland War Memorial Museums, whilst travelling to see some of the rarest birds that still survive on remote pacific islands such as the Takahe, Yellow-Eyed Penguin and Kokako.

 

20150421 IDTrainers Peregrine AnthonyRoach NaturalHistoryMuseum_PictureLibrary_005517_IA.jpg

Anthony is an enthusiastic birdwatcher following voluntary work as Peregrine Warden with the National Trust in 2006. Image: Plate 17 from John Gould's The Birds of Great Britain, Vol. 1 (1873, hand coloured lithograph).

 

Due to my strong interest in the  Museum's collections following repeated visits to exhibitions such as Dino-Birds in 2002, Wildlife Photographer of the Year and the Darwin Cenenary exhibitions in 2009, I was delighted to join the Natural History Museum as a Weekend Science Educator in 2010.

 

My interest in citizen science and teaching and inspiring people of all ages about wildlife has given me the chance to work with school and familiy audiences in the Museum's learning spaces and with Museum scientists on learnin projects and special events such as Dino Snores and Big Nature Day. I have really enjoyed working with fellow Science Educators in the flagship science centre 'Investigate' that allows visitors to handle and explore real natural history specimens, develop scientific literacy skills and inspire their interest in the natural world.

 

My proudest moment was in 2013, being asked to work alongside fellow Life and Earth sciences scientists in the Hintze Hall for the Museum's annual Science Uncovered event, where the public get the chance to meet scientists and understand the scientific research taking place at the Museum. My role was to assist the scientists and facilitate discussions with the public who were able to see incredibly rare and scientifically important specimens such as those collected by Charles Darwin and Alfred Russell Wallace.

 

I applied for the Identification Trainers for the Future traineeship to expand my knowledge of UK biodiversity and the mosaic of habitats that occur, and some of the main indicator species for the health of our environment. I was particularly moved as a result of the 2013 State of Nature report which showed that 60% of UK species studied had declined over recent decades and one in ten species assessed are under threat of disappearing altogether.

 

I wanted to do something more pro-active to help UK wildlife, inspire people of all ages through citizen science projects as well as continuing my passionate interest in museum collections. Working with staff in the Angela Marmont Centre for UK Biodiversity (AMC) allows me to do all these thngs, as it is a place where reference collections allow people to identify what they find while the AMC runs citizen science projects, events and courses to help people learn about wildlfie, contributes valuable specimens to an ever-expanding library of life and are custodians of important botanical, entomological and zoological collections.

 

I love meeting new people and working in a team and so I am looking forward to the experiences that I will have to meet new people, visit new wildlife rich places around the UK and inspire others. I would like to use the skills and experience that I gain during the traineeship to improve my understanding of UK biodiversity and the role of habitat management in creating opportunities for wildlife rich landscape-scale conservation. I would like to further improve my knowledge and experience of handling, documenting and preparing specimens for museum collections, developing wildlife keys and interpretation and the critical skills and experience of surveying, identification and field recording as well as the abiltiy to assess habitats using industry recognised approaches.

 

Thanks Anthony! We'll be introducing the final member of the first cohort of trainees soon. If you'd like to find out more about the Identification Trainers for the Future project, and the traineeships, visit: www.nhm.ac.uk/idtrainers

0

A great icon of British geology is celebrating its 200th anniversary this year. The William Smith map or 'A Delination of the strata of England and Wales with part of Scotland' brought revolutionary change to the way we think about the structure of the Earth and vastly advanced the science of geology.

 

As the Lyme Regis Fossil Festival (1-3 May) approaches, where this giant of geology will be celebrated, the Museum's online shop takes a closer look at the man behind the map and what inspired him.

 

NaturalHistoryMuseum_PictureLibrary_032075_Comp.jpg

200 years old in 2015, the William Smith map changed the face of geology

Who was William Smith?

Born in the Oxfordshire hamlet of Churchill in 1769, William Smith was the son of a blacksmith. Even though he did well at school there was never any thought of him attending university due to his family's poverty.

 

In his thrilling book The Map that Changed the World, Simon Winchester describes Smith's early signs of promise.

 

He had an apparent aptitude for geometry, he could draw more than adequately, and he had a fascination for the rocks among which he lived.

 

Smith's diaries reveal his growing eagerness for what lay beneath the greeness of the Oxfordshire fields. It seems to have been the extraordinary colours and qualities of the rocks and minerals that surfaced that first caught his eye. Winchester says:

 

...he found the whiteness of chalk extraordinary, [he wondered] why there were no stones in the Churchill fields on which he could sharpen a knife or strike a spark. Notes tell how he had collected crystals of fool's gold - iron pyrites- that workmen found when draining a great pond ... he marvelled at some farmers who were using a local blue clay to colour their barn doors.

 

After leaving education, Smith found work as a surveyor building canals during the time of the industrial revolution. At the time of this great change, Britain needed greater resources of coal and other raw materials. In 1794 Smith started work as a surveyor and prospector on the construction of the Somerset coal canal, which would be used to transport these valuable resources and help the county to trade competitively against the Welsh mines.

 

The process of building the canal involved cutting into the land revealing what lay beneath for the very first time. This confirmed Smith's suspicions of being able to identify each strata by the fossils it enclosed. He needed further information, so he collected studies of other regions and fossil catalogues to build his argument.

 

Unlike many geologists of the time, Smith had to earn his own living. Luckily he was highly sought after as a surveyor. This gave him the chance to travel the country and continue to study the land.

 

Smith found further luck when the President of the Royal Society, Sir Joseph Banks was introduced to his work through John Farey, whom Banks had hired to drain his land in Derbyshire. Farey explained to Banks that Smith had made two great discoveries: the ability to record the sequential order of rocks and the ability to identify those rocks by the fossils within the layer. Banks was suitably impressed and sponsored Smith's work. The map was eventually published in 1815.

Debt

The brilliance of Smith's map was also its downfall. It became a valuable resource for pilferers and plagiarists to create their own works. His own humble background and limited education became an obstacle for him being accepted amongst the learned scientific community.

 

NaturalHistoryMuseum_PictureLibrary_001621_Comp.jpg

 

Despite William Smith revolutionising the geological world, his maps were palgiarised and he ended up in a debtors prison.

 

John Farey, who had previously introduced Smith's work to Joseph Banks, also introduced it to George Bellas Greenough, who then used Smith's map to create his own. It was eventually published by Longman and distributed by Smith on the Strand (no relation to William Smith). Greenough knew that Smith's map was not selling well and decided to undercut him on the price of his maps.

 

Simon Winchester explains:

 

Undercutting Smith had an immmediate and devastating effct - and it coincided, almost exactly, with his committal to debtors' prison. The precise nature of cause and effect can be argued over. The coincidence of events, though, was just too cruel.

 

9780140280395-The-Map-That-Changed-The-World-1.jpg

The Map that Changed the World is Simon Winchester's engaging account of the life and work of William Smith.

Why was the map so important?

William Smith became known as 'Strata' Smith after he realised the relationship between fossils and the layer of rocks that they lay in. This helped him to create the first geological map that was based on the fossils the strata contained rather than on the composition of rock.

 

Simon Winchester possibly gives the best explanation of the importance of this particular:

It is a map that heralded the beginnings of a whole new science. It is the a document that lay the groundwork for the making of great fortunes - in oil, in iron, in coal, and in other countries in diamonds and tin and platinum and silver - that were won by explorers who used such maps. It is a map that laid the foundations of a field of study that culminated in the work of Charles Darwin. It is a map whose making signified the start of an era, not yet over, that has been marked ever since by the excitement and astonishment of scientific discoveries that allowed a man at last to stagger out from the fogs of religious dogma, and come to understand something certain about his own origins and those of the planet. It is a map that had an importance, symbolic and real, for the development of one of the great fields of study - geology - which, arguably like physics and mathematics, is a field of learning and endeavour that underpins all knowledge, all understanding.

Gift ideas

Celebrate the work of William Smith with our gift range inspired by the great man. Hone your drawing skills with an artist's tin or sketch pad; read about Smith's life or display his iconic design on an eco-friendly tote bag.

A13488-Tote-Bag-Geological-Map-NHM-1.jpg

William Smith map tote bag available from the Museum's online shop

1

The next of our new trainees to introduce themselves is Katy Potts. Katy is a keen entomologist and has volunteered with the Centre for Ecology and Hydrology and most recently with our own Coleoptera department before joining the traineeship programme.

 

I have been an amateur entomologist for the past 3 years and I am passionate about all aspects of wildlife, but particularly things with six legs. I recently graduated from Plymouth University where I studied Conservation Biology, since I graduated I have been keen to gain more knowledge in the identification of UK wildlife with particular focus on conservation. I am very interested in all aspects of wildlife but I am fascinated with insects, I find their morphology, behaviour and evolution extremely interesting.

 

Katy Potts.jpg

ID Trainer for the Future Katy Potts, with a drawer of coleoptera from the Museum's collection.

 

Over the last four years I have been involved with public engagement events with Opal and Buglife where we ran invertebrate surveys and BioBlitz projects to encourage the public to become interested in their local wildlife. I was also involved with a pollinator survey run by the Centre for Ecology and Hydrology that involved me surveying for hoverflies and bumblebees on Dartmoor and then identifying specimens to species level. This survey ignited my passion for identification further and I engaged in entomological and recording communities to develop my understanding.

 

Wildlife fascinates me, all aspects from trees, mosses and lichens to beetles and hoverflies, I find it all amazing to watch in the wild and also to learn about their ecology. The content of the traineeship enthused me as it covers core groups of UK wildlife. As I said, I have a particular interest in the six legged insects, particularly beetles.

 

After studying conservation at university I realised there has never been more importance for naturalists to have good biological skills, particuarly when species are under threat from habitat fragmentation and climate change. Naturalists need to have good biological skills in order to monitor and record trends in populations of wildlife, this can allow for the most optimal conservation of our wildlife. I knew I wanted to improve my identification skills after I left university so I came to the museum to volunteer in the Coleoptera department learning the basic skills in taxonomy and how to preserve biological records.

 

This traineeship is the next step in my path to becoming a wildlife expert. I am looking forward to engaging in the identifcation workshops and field trips where we will learn the key knowledge, principles and skills of taxonomy and biological recording. I am keen to develop my identification skills and this traineeship will equip me with the skills to begin my career as a UK wildlife scientist.

 

After this section of the training we can then apply this knowlege and pass it on to others by learning how to teach others about UK wildlife. This part of the traineeship can be done in a practical manner and I am particularly looking forward to fomulating my own identifcation workshops to teach others what I have learnt. I hope to engage others in the identification of insects in the UK by creating a guide to the commonly found insects by encouraging them to look around their local parks and woodlands. This should be fun and engage people with their local wildlife.

 

I feel inspired by this traineeship, a career in the biodiversity sector represents what I have been working towards during my degree and now as a graduate. I hope to gain a broad range of knowlege in UK wildlife identification skills, with a developing expertise in the insects. I would like to increase my skillset in biological recording both in the field and in the curation of biological records and I hope to improve my skills in science communication and public engagement, which will allow me to effectively teach others and raise awareness about natural history in the UK.

 

The Museum is an important resource for schools and many of the UK's future scientists, I am eager to ensure that future generations are able to identify the wildlife that is around them.

 

Thanks Katy! We'll be introducing the remaining 2 members of the first cohort of trainees over the next week. If you'd like to find out more about the Identification Trainers for the Future project, and the traineeships, visit: www.nhm.ac.uk/idtrainers

0

In the second post in our series introducing the new trainees on the Identification Trainers for the Future project, meet Sally Hyslop a keen volunteer recorder who will be focussing on our Bluebells survey project in the next few weeks.

 

My curiosity for natural history stems from many years of study, both out in the field and academically. I studied Zoology at the University of Sheffield where I completed an undergraduate Masters degree. Volunteering, however, has always complimented my studies and I take any opportuity to learn a little more about the natural world. These experiences range from volunteering in the collections of my local museum to working with big cats in wildlife sanctuaries.

Sally Hyslop.jpg

ID Trainer for the Future Sally Hyslop, whose background is in zoology.

 

Since leaving university and returning to my home in Kent, I have become increasingly involved in recording and monitoring the biodiversity in my area, taking part in identification courses and surveys with orgnaisations such as Kent Wildlfie Trust, Kent Mammal Group and Plantlife. I also volunteer as a Meadow Champion for the Medway Valley Countryside Partnership, a community-focused project which aims to increase understanding and conservation of our remaining meadow habitats.

 

Prior to starting as a trainee at the Museum, I was Young Facilitator for the National Council for Voluntary Youth Services, working alongside partner organisation The Conservation Volunteers on wildlife projects in Kent. I supported and led weekly sessions of school groups which were focused on inspiring environmental action and promoting outdoor learning. The children were always enthusiastic and inquisitive, making the challenge of explaining new ideas and concepts to them a pleasure.

 

Through my own amateur interest in ecology, I was able to introduce the children to basic identification, using all sorts of species encountered during the sessions as examples. Our sessions concentrated on creating new habitats in school grounds and I particularly enjoyed planting meadows with the children, an activity through which I could introduce the children to native wildflowers and their defining features. Working with school groups and at my local environment centre has given me new insight into wildlife education, which I hope will benefit my experience during the traineeship.

 

I look forward to developing my understainding of UK biodiversity throughout my time at the Museum, yet I am particularly excited about learning and developing creative ways to pass these skills on. I'm especially keen to start delving into the collections and it will be brilliant to have both the time and resources to improve on my identification - I also hope to use any spare moment practising scientific illustration!

 

Thanks Sally! We'll be introducing other members of the first cohort of trainees over the next couple of weeks. If you'd like to find out more about the Identification Trainers for the Future project, and the traineeships, visit: www.nhm.ac.uk/idtrainers