Skip navigation
You are here: Home > NaturePlus > Blogs

Blog Posts

Blog Posts

Items per page
1 2 Previous Next
0

Welcome to our brand new blog full of behind-the-scenes news about the Museum's online shop. This is where you'll be able to gain insider knowledge about products, reviews and the unique offers that are exclusive to us. To celebrate our very first post (and the fact that spring is almost here) our dinosaurs, and some of their friends, decided to join us for a cup of tea and cake.

 

Dinosaur's picnic.jpg

Our dinos love any excuse for a bit of #MuseumCake.

 

Although some ended up with more than others...

 

IMG_0151.jpg

Never trust a T. rex with your biscuits.

 

Hmmm, well we managed to grab a few crumbs from the plate and are roaring to get going. So what can you expect from us?

 

  • Exclusive offers: missed out on our half price dinosaur trunki, £100 voucher giveaway or Darwin day book offer? Don't you worry we'll have plenty more competitions coming up. Remember to check for free delivery weekends.
  • Product of the month: each month we choose our favourite product and tell you why we love it.
  • Real reviews: do you want to be featured in our blog? Then send us a review of your favourite product in the comments below or tweet a photo to @Shop_at_NHM.
  • Up to the minute news of brand new features of the shop website, including our new, updated prints on demand category.
  • The stories behind our products and how they are sourced.

 

Seriously, what else could you possibly want from us? More? Well, alright. If we have missed something you'd love to see let us know in the comments below.

Why should I shop with the Museum?

Good question. When you shop with the Museum you are supporting our work, whether it's maintaining the amazing late Victorian building, keeping the specimens looking pristine for your visit or funding our research.

Why should I fund your research?

Another good question. Research doesn't just take place in the Museum. Our scientists are sent to the far flung corners of the Earth to monitor endangered species or identify new ones.

 

Some of our research includes:

 

 

And this is only part of our work.The money raised helps to fund informative and engaging exhibitions that raise public awareness of urgent issues surrounding the natural world. Buying from the Museum's online shop gives you the chance to buy great gifts while supporting valuable work.

 

We hope we've given you enough to stick around and and a good reason to browse our online shop. If there is anything you feel that we missed remember to comment. We're off for some more tea and cake before the dinosaurs eat it all.

 

IMG_0158.jpg

It's a hard life living in the Museum.

0

On Wed 14 January 2014, the Museum welcomed a guest speaker to present a special science seminar. Richard Pyle of Bishop Museum, Honolulu, Hawaii, spoke about:

 

...the number of species on planet Earth that remain unknown to science exceeds (perhaps vastly) the number of species that have so far been discovered, let alone formally documented... Within the global biodiversity library, we are at this point in human history like toddlers running through the halls of the Library of Congress, largely unaware of the true value of the information that surrounds us... Taxonomists are the librarians, developing new tools to build the card catalog for the Greatest Library on Earth... What we accomplish within the next twenty years will impact the quality of life for humans over the next twenty thousand years.

 

Richard is an ichthyologist exploring extreme deep reef habitats, a bioinformatician and an ICZN Commissioner, a SCUBA re-breather engineer and and a two-time, two-topic TED Speaker. Watch the film of Rich's fascinating talk in the Museum's Flett Theatre:

 

0

The evolutionary rates of sea urchins are more complex than previously thought, a finding that could apply across the evolutionary tree.

 

Evolution within groups of organisms was first thought to occur continuously, at a constant rate. Fossil-based analyses soon led to the belief that many groups quickly reach maximum diversity early on in their history, followed by a decline in evolutionary rates as habitat types fill up.

 

Now, in a detailed analysis of a group of marine invertebrates called echinoids, Dr Melanie Hopkins of the American Museum of Natural History and Museum palaeobiologist Dr Andrew Smith have found a branch of the evolutionary tree that has increased its evolutionary rate over time.

Slow starters

Modern echinoids originated 265 million years ago, just before the Permian-Triassic mass extinction, an event that wiped out around 96% of all marine species. They still exist today as sea urchins and sand dollars.

 

Despite the abundance of ecological space left behind after the mass extinction, Dr Hopkins and Dr Smith found that echinoids experienced the lowest rates of evolutionary diversification during this early phase. Said Dr Smith of the result:

This slow start is very different from the standard model of high initial rates of diversification followed by a slowing down as ecological space gets filled that we have come to expect.

Bursts of diversity

When they looked in more detail at sub-groups of echinoids through time, they discovered that some that underwent episodes of 'early bursts' in evolution, primarily associated with the adoption of new feeding strategies.

 

For example, one particular group of echinoids - the sand dollars - evolved a novel method of 'deposit-feeding' that allowed them to filter nutrients from the sand, and this innovation coincided with a marked increase in morphological innovation.

 

Echinoids-700.jpg

Regular echinoids like the sea urchin (left) have five-fold symmetry and can head in any direction, whereas irregular echinoids, like the sand dollar (right) have two-fold symmetry, with defined 'front' and 'back' ends.

 

A question of scale

The overall pattern of slowing evolutionary rates punctuated by smaller 'early burst' events within certain subgroups points to the importance of considering scale when assessing the evolutionary history of any group. Said Dr Smith:

Rates of evolution turn out to be quite different when viewed at different scales, and both 'continuous' and 'early burst' patterns of evolution may apply to the same group depending upon how you view them.

 

More information:

0

Trills and twitters of finches greet us each morning - at extra volume on the chilly bright mornings - and continue throughout the day as goldfinches, greenfinches and chaffinches compete for space on our bird feeders. Flocks of blue, great and long-tailed tits forage in the tree tops and hedgerows, and occasionally join the finches for seeds or fat balls while our resident blackbirds, robins, wrens and dunnocks can be heard amongst the shrubs and leaf litter.

1. Robin  amongst hawthorn WLG_17Jan2015-030 -JJ-700px.jpg

A robin singing through a tangle of hawthorn

© Jonathan Jackson

 

Over-wintering redwings were spotted swooping down to feed on the remaining holly berries last month. But what about some of our less common winter visitors? Daniel Osborne, has been looking at recent work by the British Trust for Ornithology (BTO)'s outstanding citizen science experiment Garden BirdWatch which unravels a mystery surrounding the blackcap:

 

"The Blackcap (Sylvia atricapilla), like other UK warblers, is primarily a summer visitor, arriving in April and May to establish a breeding territory, build a nest and raise young, then departing in September and October to overwinter in Southern Europe and North Africa. Its beautiful varied song can be heard occasionally in the Wildlife Garden in spring and summer and the bird itself - a fairly drab yet distinctive grey and light brown bird, the male with a black cap, the female a brown cap - is regularly observed among the trees and woodland and even bred in the garden in 2012.

 

2. blackcap, David Tipling.jpg

Blackcap (Sylvia atricapilla)

© David Tipling

 

Since the 1950s, with the increase in use of garden bird feeders, the number of Blackcaps overwintering in the UK has increased dramatically. And in the last 30 years ornithologists have noticed the number of blackcaps in the UK during winter has seemed disproportionately large.

 

A number of bird ringing programmes in the UK and Europe provided the explanation. Bird ringing is the process of catching a bird, often in a net or while it is still in the nest, and attaching a small ring of metal to one of its legs before releasing it.

 

3. blackcap ringing in progress BTO.jpg

Bird-ringing in progress

© BTO

 

The hope is that the ring will be seen again, either by a keen-eyed birdwatcher or by anyone who should happen to chance upon the bird at close enough range. The ring's unique code means that scientists can be certain of an individual bird's movements. This technique has provided a number of extraordinary insights into bird migration including the large number of overwintering blackcaps.

 

It was found that while some German blackcaps were migrating south to Southern Europe and North Africa some were migrating to spend winter in the UK. The UK's maritime climate warmed by the Gulf Stream means that winters are milder here than in the continental climate of Germany, and global temperatures are increasing as a result of man-made climate change.

 

This increase in warmth is likely to mean more food, in the form of insects and berries, available during the winter and fewer sub-zero nights to endure, and has no doubt made the UK in recent years a more attractive winter destination, but surely not as attractive as Southern Europe and North Africa. That is, until the added benefit of the artificial food left out in UK gardens is taken into account.

 

4. Europe blackcap migration-700px.jpg

Blackcap migration routes from Germany

 

The abundance and reliability of artificial food in our gardens is of course invaluable to our native species, particularly in winter. In the last 30 years or so it has also brought about this change in blackcap migration strategy. Ongoing work by Kate Plummer of the BTO has demonstrated that bird feeding activities have been important in the establishment of the overwintering blackcaps.

 

The food we put out for birds in winter is tempting indeed and the blackcap population that comes here, instead of heading south, enjoys some distinct advantages. The distance is about a third shorter, which means not only do the UK-wintering birds reduce the costs and perils of migration, but they actually arrive back in Germany first.

 

This means they can take the prime breeding territories and potentially raise a greater number of healthier young. A fascinating by-product of this is that Germany's UK-wintering population and the southerly-wintering population breed at different times and are now genetically distinct. This winter I have so far seen one female blackcap in the Wildlife Garden, but look forward to seeing more of these beautiful birds, and speculating about how they came to be spending winter in the UK."

 

6931585860_1f68e24ed0_b.jpg

A female blackcap

© Edwyn Anderton, Flickr

 

Thank you Daniel. Last weekend we cleaned and repaired our nest boxes ready for this year's residents.

0

As part of International Open Data Day, the Natural History Museum is opening up its digital collections and research data through its new Data Portal. An increasing number of governments and publicly-funded organisations are committed to making data available for unrestricted use - Open Data.  NHM supports this principle and its data are of particular value to scientific research on biodiversity, looking at changes of species over time and in geographical distributions, and predicting future trends. This is something of particular interest in the face of human pressures on the natural environment and the need for effective policy responses for a sustainable future.


dataportal.JPG

 

The Portal provides a digital access point to over 2.7 million specimens in the Museum’s collection, as well as thousands of other records and datasets that enthusiasts can browse, download and reuse.  The Data Portal also holds a growing and varied collection of research datasets, including the Museum's wildlife sound archives, checklists of British species, and even assembly instructions for a Lego device to manipulate pinned insects.

 

oo_38203.jpg

 

The Museum’s Vince Smith and Ben Scott created the system. Vince Smith said,  “Data on the collection is one of our greatest assets. We wanted to expose the Museum’s data to our peers in a way that allows them to easily discover and reuse it.”

 

Plebejus argus.jpg

 

“The Data Portal will provide an archive for the hundreds of research datasets generated by museum scientists each year”, said Vince. “It also allows the Museum to contribute to global science initiatives, such as the Global Biodiversity Information Facility, who are aggregating all known data on the occurrence of species worldwide.”

 

The collection could once only be accessed when academics took the opportunity to visit the Museum in person.  It is now accessible to anyone with an internet connection, anywhere in the world. Ben Scott said: "There is huge value in exposing this data to the world - we are excited to see what people use it for."

 

The Museum has over 300 Science staff, generating almost 1,000 scientific papers every year - these papers are now being presented as dynamic lists on the new staff biographies, which will link in coming months to a new NHM Open Repository for published materials.  The new Data Portal will provide a platform for scientists to share the datasets that have been created alongside their studies.

 

Vince Smith said: “We hope that the Museum's open approach will further understanding of the natural world, and foster innovation allowing other scientists to test and build upon existing Museum research.” 

 

Open Data Day brings people together around the world to  use open public data in innovative ways: creating new approaches to visual presentation; doing analysis and research; and exploring new data products.  It is part of efforts to  support and encourage open data policies all around the world to open up access and increase benefits to all.  As part of Open Data Day on 21 February 2015, Ben Scott will be attending the London outpost, and helping people use Museum data in their hackathons.

0

What does the future hold for the Pangolin?  They are rapidly earning the reputation of being the mammal with the world’s highest level of illegal trade, yet many people have never heard of them.

 

Louise Tomsett, Mammal Curator at the NHM, is giving two Nature Live events on Saturday 21st February 2015 - World Pangolin Day - in order to raise awareness of these lesser-known animals, and to highlight the threat of extinction due to the illegal wildlife trade. She will be showing specimens from the NHM’s scientific collections, not normally on display to the public.

 

What are pangolins?


Pangolins are nicknamed "scaly anteaters" but they are not the same animal we generally think of as an anteater. Despite their distinctive appearance, making them hard to confuse with any other mammal, relatively few people know about them. The scales cover most of their body, giving them the appearance of a "living pine cone" or artichoke. They live in a variety of habitats such as grassland, rainforest and agricultural areas such as plantations. There are four species in Africa and four in Asia.

 

Sunda or Malyan pangolin ii.JPGThe Sunda or Malayan Pangolin


Pangolins are well adapted to their ecological niche. They feed primarily on ants and termites, using large, powerful claws to break open nests and mounds, and very long, sticky tongues to lick up the insects. Their specialised ears and eyelids can be closed to prevent attack by ants. The scales are an aid for digging burrows, and help some species climb trees in addition to acting as armour against ants and larger attackers such as lions.

 

pangolin_scales.JPGPangolin scales

 

When threatened pangolins curl up into a tight ball, rendering them virtually impenetrable, even to a lion’s teeth. Their common name ‘pangolin’ even comes from a Malay term generally meaning ‘rolled up’. Unfortunately it is this defence mechanism that also makes them rather easy for poachers to pick up and carry.


Conservation issues


The main threats to pangolins are the illegal wildlife trade and habitat destruction. Trade in pangolins (live and dead) is on an international scale, with confiscated shipments often amounting to tonnes. Quantities found in seized shipments represent only a fraction of the real numbers traded and estimates of the trade indicate as much as tens of thousands of individuals each year. The main drive for trade is the falsely attributed health benefits of pangolin meat and other body parts such as scales. Alleged benefits range from curing acne to curing cancer. In some countries, the sheer cost of the meat and being able to afford it is used as a status symbol. Pangolins are also used as bush meat, for indigenous folk-law rituals and for leather goods.

 

The traditional source for pangolins for the illegal trade is southeast Asia but this is now appearing to change, with African pangolins now a target as Asian pangolins run out.  The consequence is that all species of pangolins are now threated with extinction.


tree or African white-bellied pangolin.jpg

Tree or African White-Bellied Pangolin

 

Pangolins are easily stressed and many die during the hunting and trafficking process, or even once rescued. They are extremely difficult to keep in captivity due to the fact that very little is known about their biology and care. In addition to this a continuous food supply of live ants and termites is very difficult to source. They have rarely been bred successfully and usually only have one offspring at a time so with current hunting levels, populations are not sustainable.

 

giant African pangolin scale.JPGScale of the Giant African Pangolin

 

The NHM’s collections are used by scientific researchers from all over the world. Like many of our collections, the pangolin specimens we hold contain a wealth of information, much of it waiting to be unlocked. For example, the geographical information can provide historical species ranges, specimen tissue samples for DNA analysis shows the genetics of different populations and isotope analysis of samples indicates geographical sources and movements during an individual’s life. All of this information is extremely valuable for conservation.

 

Louise Tomsett

 

#worldpangolinday

0

It's been a while but we have now the penultimate installment of the Peruvian Adventure by Dave the driver Hall...enjoy.

 

I think that fourth night must have been the first one I've spent at 2,700m and I didn't seem any the worse for it. I tugged at the wooden shutters to see what day five on the road might have in store. Weather: acceptable for driving on dodgy roads. High, thin clouds cut with watery pastels. A shabby old town in diluted blue and sunbleached turquoise. The plaza mayor was just creaking into life. A cluster of women in straw hats held conference outside a grocer's. A policeman heaved open the giant wooden double doors of an eroded old police station, yawned, and spat.

 

I took a cold shower, dressed and started lugging trunks and sample boxes from last night's sorting. Prof. Knapp was already up (of course) dismantling the drier. The daily task of packing seemed a little more arduous this morning. Either the altitude, or the shin-barkingly steep antique stairs. The van was parked in a square pound at the back of the hotel, which looked appealingly like the OK Corral. Sandy had been a little concerned that the truck might not still be there this morning, but the locals seemed harmless enough to me, if not exactly chummy.

 

The growing light revealed our hotel to be of a certain vintage; much of the rear was semi-derelict and empty. I creaked back and forth with my boxes through creepy cavernous dusty backrooms, using the return trips to investigate dark passages and musty staircases leading nowhere, the only sounds my wheezing and the drip of an old tap. And here an appealingly dilapidated old dining room-dance hall I could imagine thronging with local revellers.

Untitled-1.jpg

Morning in Celendin.

 

After breakfast I took a few moments to explore the town, too. It might be old hat for the Dr Livingstones in our midst but I was unlikely to set eyes on the place again. Erica likes telling me how amusing it is reading my rhapsodic perspective on what she sees as routine grubby fieldwork: I see cascades of mountains; she sees dirty socks drying on the dashboard.

 

(Erica here - not exactly how I phrased it - he was bemoaning us for failing to see the beauty all around us - Sandy and I were concentrating on flies and spuds )

 

The market was already open for a day's easygoing trade. I ambled over. Three schoolboys kicked a burst ball to each other on the way to classes. The policeman hadn't moved. Stallholders unhurriedly erected awnings and set out their wares along the narrow thoroughfares, the alley-tunnels filled with the pungent aroma of meat, overripe fruit and hawker-stall breakfasts. I bought plump oranges and tomatoes for lunch from one of the impassively leather-faced vendors and wandered back to the hotel, ready for another day behind the wheel.

 

But no! Erica announced she'd be driving today, to 'give me a break'. The cheek. I protested firmly, in my quietest voice. This felt like cheating, but I was anticipating incredible scenery, ahead so I didn't flap.

 

(Erica again - they are long days driving- even we are not that nasty to make him drive continuously)

 

In contrast to other towns thus far it was a fair doddle finding the route out of town. Without at least two simultaneous sets of directions being offered in each ear, the going seemed somehow easier. Being fair, it wasn't hard to navigate. There was little traffic, and thanks to the colonial grid system we simply had to find the edge of the town and keep going until we hit a road going east.

 

Nevertheless, this road looked unpromising – a narrow back-street cluttered with the detritus of townsfolk's lives: bits of motorbike, smashed agricultural implements, underfed dogs...

 

But here a sign, which told us it was a mere 150km to our next stop, Leymebamba, and presently we started climbing.

 

The narrow road wound up again through foothills scarred with gold-mining quarries, many illegal. The locals had been protesting for some time, largely to deaf ears, that these mines – many sponsored by American multinationals – are polluting the water supply.

 

Above the scarred hillsides we rose... the road surface was perfect and I couldn't help thinking what an epic bike ride this would make for the stout of heart. Eventually the treeline gave way to rousing views of Celendin far below, where the light-blue double steeple of the church in the town square poked above the ramshackle rooftops. The town nestled in a half-bowl surrounded by hills. It must have looked attractive to the early Inca settlers and, unfortunately for them, the Spanish too. The head of the valley ended in an unseen drop, and far beyond were mountains whose peaks seemed oddly level with the town itself... now it was clear how high up the town was.

 

Still we climbed, this time without finding any locals to pester about their potatoes. Spying as yet no specimens, we meandered upward and upward, through rugged moorland, ever closer to the clouds that before had seemed so far off. As the sun finally renewed hostilities and the clouds began to leak a bit of sunshine, we reached a high pass of about 3,500m where a tiny village sat incongruously amid the rugged landscape, complete with a tiny football pitch and neatly planted conifers. The place had a strangely manicured feel.

 

Then, suddenly, the other side. As we breached the other side of the pass, a completely different panorama opened up. A dramatic series of valleys and mountain ranges rolled into the east, rib upon rib wreathed in mist, multiple horizons fading toward the Amazon. Somewhere to our right, far below and well beyond view, the Marañón River was thundering on its 1,700km looping journey toward the king of rivers. My head span at the spectacle. Sandy and Evelyn discussed tomatoes. Erica drove on without comment.

 

Our way wasn't getting any wider. As we wound downwards, hugging the cliffsides, the road only narrowed further. The bends were like fishhooks, and here and there were patches where the roadworks had not reached or where recent repairs had simply slid down the cliff. There were no barriers to protect motorists from the yawning 1,000-foot drops a matter of inches from the wheels. Superfluous roadsigns warned us to slow down and keep right. Erica didn't need much encouragement. Everyone in the car seemed to become silent. I tried to look far ahead to see if anything was coming the other way. We could only imagine what it must be like for lorry and bus drivers.

 

I was beginning to enjoy myself.

 

Untitled-3.jpg

A yawning 1,000-foot drop inches to the left.

 

In the clouds now. I like being in clouds, but it doesn't help with the driving. Breaks in the mist revealed teasing glimpses of dark, sheer mountainsides. Here and there the sun poked through and a rainbow made a perfect technicolor arch over the road.

 

Untitled-4.jpg

Driving through the Peruvian mountains.

 

Then just as suddenly, out of the mist, full sunshine, the scenery changing from hairpin to hairpin. We were descending toward a lush shoulder of high land, an upper valley nestled in a crown of mountains far below, dotted with tiny farmhouses and quiltwork cornfields, into which the road descended in a series of insane switchbacks. It was a perfect lost valley; a prime spot for Eldorado.

 

Untitled-5.jpg

A prime spot for Eldorado.

 

I still have no idea how Sandy spots specimens from the car even at the modest speeds we were achieving. But at last Prof Knapp bade us stop for our first samples amid a gradually drier landscape.

 

The sun was melting the clouds away and the morning was mellowing nicely. Nearby, an allotment of sorts, a small bungalow and what I thought were petrol pumps. The immediate area was lush, catching runoff rainwater in a small series of irrigation ditches. Prime mozzie territory, I thought. Again, parts of the area had been cleared recently – the solanum species again proving keener than mustard to move in quick on new space.

 

My ridiculous sample notes about the sampling area – for 'twas my job – read: “A small irrigation ditch is nearby and a 'petrol station' nearby also.”  I see now it was not a petrol station, but someone's dwelling, but their toilets seemed public enough at the time.

 

Sandy and the Fly Girls exited, rummaged in the back for Sucky and Sweep, then set off into the undergrowth. Evelyn swished gamely. Erica bothered a bush. I made notes. Sandy snagged some excellent samples of Solanum dilleni. I went to the toilet again.

 

(Erica once more - many conversations on fieldtrips revolve around toilets - how often you need to go, the facilities etc)

 

On we went. As we sank riverwards, hopes rose in the back of the truck that the ever-more arid terrain may harbour the tomato relatives we had encountered in similar habitats earlier in the trip: habrochaites perhaps. It was getting drier and drier. I prefer the lush stuff up in the mountains.

 

We fairly freewheeled to the next stop a couple of miles hence, where a sharp bend in the road concealed a small clutch of solenum arcanum known from Sandy's notes to be in this location many years previously. It was still there. All manner of insects waited to be sucked from the bushes, but nearby sat a sizeable troop of Homosapiens Peruensis, taking a break from mending the road. They were much animated by the sight of Erica's immense suction apparatus. We had disturbed the species in its natural habitat, so had to bear with good grace the sniggering and what I imagined to be Spanish double entendres. The Challenges of Fieldwork.

 

My notes say we came away with some samples of “Solanum simplefolium” but, according to Google, this doesn't exist. That's a shame – I liked that name. I can only imagine it was Solanum pimpenellifolium. This sports little purple flowers and tiny tomatoes – tomatillos – which are edible. It's a really close relative of our tomatoes. Indeed, it is sometimes called a wild tomato.

 

Untitled-6.jpg

Some Peruvian geology.

 

Further we sank toward the Marañón in our search for tomato and potato data, through spectacular peaks and pyramids of twisted volcanic rock where lava seams poked through like ribcages, past abandoned pasture and the occasional hungry-looking donkey picking through the brush.

 

At last we reached the valley floor, at the village of Chacanto in the district of Las Balsas – gateway to the Amazonas region. It was now all firmly semi-desert, reminiscent of parts of Nevada or Utah, catching the full ferocity of the sun. It felt like being stir-fried. The river looked inviting, but the Marañón slides through at a good clip here even in the dry season. It is a mere stream compared with what it would become downstream, but the bridge that spans it is a good 100m in length. We rolled over the bridge, stopped only a few minutes for a coffee in the sleepy village, and went on our way. We still had a long way to go...

 

Untitled-7.jpg

The Marañón River at the bottom of the valley.

 

Erica - since writing these blog pieces we have been analysing some of the data and trying to figure out what some of the insects that we sampled are. It has taken months to do this and there have been at least 9 people so far going through the insects. many are about to be sent of to specialists across the globe. Upstairs from where I am typing this at my desk we have two people imaging some of the specimens before they are sequenced for their DNA....its a very exciting time for this project.

0

This blog post is a guest blog from the Natural History Investigators at Oxford Univeristy Natural History Museum (OUNHM).  After visiting us in London, to find out more about The Microverse research and to support us in our development of the project, museum educator Sarah Lloyd, took the project back to Oxford to involve students at both the OUNHM and the Oxford University Botanic Garden.  Here is what the Natural History Investigators got up to.

 

One snowy Saturday morning we unpacked our Microverse pack and lay out the scientific looking contents.  We are Natural History Investigators, a group of 14 to 16 year olds who meet every Saturday morning at OUNHM. We carry out our own research using Museum specimens. Before we begin our individual project work, we always spend some time doing something together. We've been into the Museum's spirit store, we have handled live tarantulas, but this week we were to collect samples to contribute to The Microverse project.

 

photo1.JPG

Investigator, Gemma George investigating the similarities and differences between domestic and wild cats.

 

We divided the tasks amongst the group. Three of us were photographers. Six of us were keen to glove up and become swabbers and sample collectors.  We read through our instructions carefully and began collecting the grime that has accumulated on the outside of the neo-gothic museum building since 1860. We were very thorough and very efficient. Freezing temperatures definitely focus the mind!

 

photo.JPG

Abdullah Nassar collects samples from the north wall of the Museum.

 

With everything packaged up we eagerly wait to find out how many species exist in this special environment. Our individual projects have been based on things we can observe and hold in our hands.  So we are really keen to find out more about the process of studying life that you can't see or hold!

 

Natural History Investigators, OUNHM

 

OUMNH_logo_RGBblue.jpg

 

I can confirm that the samples from OUNHM have arrived at the Museum's laboratory.  Our lab assistant Filipa will be starting the PCR process very soon and then they will go into the sequencer.  In just a couple of weeks we'll be able to send the results back the Natural History Investigators, for them to explore.

 

Jade Lauren

0

A team of geologists from the Museum and Imperial College are in Mexico carrying out  fieldwork at two of the most active volcanoes in the world: Popocatépetl (Popo) and Colima. Catch up with their adventures in this series of blogposts.

 

Three weeks of amazing fieldwork at two of the most active volcanoes of the world have come to an end: Popocatépetl and Colima, you have been very generous to us, both in terms of large quantities of promising samples and impressive levels of activity. Now that we are back in London, we want to conclude this blog for the time being with some take-home impressions of our beautiful Mexican volcanoes.

 

As scenic and contemplative these pictures may be, all the steam puff, ash clouds and fresh lava streams are a constant reminder of the immense destructive powers slumbering within these giant volcanoes, posing imminent danger to its surroundings. Both Popo and Colima have shown increasing levels of activity in the last months, making detailed real-time monitoring as well as fundamental studies of the underlying principles of the volcanoes’ dynamics even more pressing and important.

 

Using the samples we collected during the last three weeks, we, at the Natural History Museum and Imperial College will work hard in the future to contribute to the understanding of how Popo and Colima work.

 

There is more fieldwork at Popo to come in the next years, and of course we will be covering these trips at this exact place again. Until then, enjoy the pictures and be sure to watch out for a forthcoming NatureLive event at the Museum’s Attenborough Studio, where we will be talking in detail about our exciting trip to Popo and Colima! Thanks for reading.

 

Cloudy.jpg

Popo as seen from Paso de Cortes: The wind blows the impressive steam plume to the NE.

 

View from Creep village.jpg

Looking South: The mildly snow-capped Popo towers in a surreal way over the trees surrounding ‘La Cascada’ resort.

 

Volcano Train.jpg

A last view from our hotel in Amecameca: Popo bids farewell to us with a nice trail of steam puffs.

 

Colima_clouds.jpg

The danger within the clouds: Fuego de Colima. Even through the cloud cover, one can make out the gases that are constantly exhaled from the summit.

 

Colima_lobe.jpg

The black lava flow in the center of this image has been emplaced during the last two years of activity of Fuego de Colima. The ‘clouds’ you can see here are actually gases coming from this lava flow, which is still hot.

 

Steam_Colima.jpg

Twin peaks: The steaming, several hundreds of degrees hot summit area of Fuego de Colima in the foreground, and its snow-capped older sister volcano, Nevado de Colima, in the background.

0

Last December, Epi Vaccaro (one of our PhD students) and I went to two scientific meetings in Tokyo, Japan. Our aims were to present some of the research that we’ve been doing at the Museum and to meet other scientists who work on similar samples and topics.

 

First up was the Fifth Symposium on Polar Science at the National Institute of Polar Research (NIPR). Since the early 1960s, the NIPR has used Antarctic stations to carry out research into a wide range of areas including climate, atmospheric science and biology. Fortunately for us, they are also interested in meteorites and, after several 'meteorite hunting'expeditions in the Antarctic, now have one of the largest collections in the world.

 

I spoke at the meeting (despite a serious case of jetlag!) about differences I have observed between the mineralogy of CI chondrites that were seen to fall to Earth, such as Orgueil, and those that have been recovered from the Antarctic. These CI meteorites are important as they show very similar characteristics to the surfaces of some asteroids that are soon(ish!) to be visited by space missions.

 

Pic1.jpg

Presentations were temporarily suspended at the NIPR meeting as we watched the launch of the Hayabusa-2 mission.

 

One of these missions is the Japanese Aerospace Exploration Agency (JAXA) Hayabusa-2 spacecraft, which aims to collect material from a primitive asteroid and return it to Earth. We think that this material will allow us to learn more about water and life in the early solar system.

 

The samples won’t touch down on Earth until 2020 but the spacecraft was launched (after a few days delay) during our stay in Japan. I think that watching a tiny spacecraft being hurtled into space on the back of a rocket, whilst sitting alongside the people who have invested so much time and energy into the mission, was one of the most tense afternoons of my life!*

 

Pic2.jpg

Model of the Hayabusa spacecraft at the Japanese Aerospace Exploration Agency (JAXA).

 

You may have guessed from its name that Hayabusa-2 is actually a follow up to the original Hayabusa spacecraft, which (despite a few bumps along the way) in 2010 became the first ever mission to collect material from an asteroid and bring it back to Earth.

 

Hayabusa 2014 Symposium at JAXA. The meeting covered diverse subjects such as space weathering and sample curation, and also included a talk by Epi on the challenges of analysing very small samples using non-destructive techniques.

 

Pic3.jpg

Epi presenting his work at the Hayabusa 2014 Symposium at JAXA.

 

Sample return missions are challenging and expensive but produce very exciting science, as I witnessed at JAXA. There are limits on what kinds of scientific experiments can be carried out remotely, but returned samples from the asteroid belt will provide a wealth of new information about our solar system’s past.

 

*You’ll be pleased to hear that the launch was successful and Hayabusa-2 is safely on its way.

0

Museum collections are being transformed into a radical new resource for science through digitisation: creating image resources and immense databases that allow advanced research for the future of the planet. Professor Ian Owens, the NHM Director of Science, gave a symposium on this subject in collaboration with Dr Jonathan Coddington and Dr Kirk Johnston of the Smithsonian National Museum of Natural History at the American Association for the Advancement of Science in San Jose, California, on 14 February 2015.

 

Ecosystems and human needs

 

All humans depend on biodiversity in a wide variety of ways. Clean water, food crop production, sea fisheries, tourism, timber and many more human needs rely on the functions of ecosystems to a significant degree. Over the last twenty years we have seen much greater development of the idea of ecosystem services - a concept that thinks of the economic and other values of the natural world to humans and integrates those values into policy, education, natural resource management and other activities. This supports better decision making and aims to ensure sustainability - the continued use of ecosystem services by people over time and by generations in the future.  Biodiversity is central to ecosystem services - the variety and complexity of species and populations is immensely valuable to us all, but we know that we do not properly understand how ecosystems work, or the real value of biodiversity.

 

Data: 4.5 billion specimens, 1.9 million species, 300 years, and now DNA

 

Sustainable ecosystems management depends upon the availability of information about the variation of biodiversity. Natural history collections are a vital source of these data, holding billions of specimens collected over three centuries, each witness to past ecological conditions and historic distributions. This presentation showed how collection organizations are using digitization to unlock the vaults of their collections and develop tools to map, monitor and understand the natural world.


Slide02.jpg

 

The scale of the world's collections is immense, representing billions of datapoints. The Smithsonian NMNH in Washington is the largest collection with the NHM in London and the MNHN in Paris following. The data from these and many other colections together are a resource recording distribution, species and dates from which changes in biodiversity over time can be analysed.  However, most of these data from the last 350 years is on labels, cards and in books, meaning that they are not readily available to modern science or computing.  The challenge for collaboration is to transform the information into electronic data for modern biosphere science.

 

Collections  transforming science

 

Museum collections have always changed the way that we think about the world by enabling scientific comparison and research: the discovery of the dinosaurs; the origins of humans; and the processes of evolution.

 

1311Leicester.033.jpg

Charles Darwin's Galapagos finches in the NHM: a key to understanding evolution

 

As science and techniques change, so does the potential of museum collections - the recent revolutions in DNA and genomics enable collections to be seen in a completely new light as resources for researching evolution and relationships; the development of computing and data analysis allows rapid analysis of big patterns in space and time to be explored in ways that could only be imagined twenty years ago.  NHM uses CT scanning to create digital replicas of delicate specimens for complex modelling; advanced analytical techniques with electron beam instruments to understand the detail of mineral structure and economic potential; and new applications of electron microscopy to give insights into the smallest detail of anatomy and development.

 

Our partial knowledge - species and diversity as a key to understanding ecosystem value and function

 

When it comes to the Biosphere and understanding how ecosystems work, the last 350 years have seen the discovery and description of around a quarter of the species that exist (excluding bacteria and similar microbes). 400,000 beetle species have been discovered, but this almost certainly represents a minority of those that exist.  New technologies with DNA look likely to revolutionise the nature of discovery - and give access to greater knowledge of the link between diversity and our needs from ecosystems.  Around 1.9 million Eukaryote species have been described out of a probable 8-9 million.  If we consider bacteria, there could be tens of millions more species.  We are currently, worldwide, describing around 15,000 species a year so the rate of discovery with current techniques is not going to close the knowledge gap: we need more rapid approaches to description and characterisation of biodiversity, and more sophisticated thinking on the importance of biodiversity in ecosystem function.

 

beetles.jpg


How do we understand biodiversity in a different way, and how can we speed up the development of our knowledge, particularly for the huge diversity of minute soil organisms, fungi and microbes? The effort of our science is at the moment focused on larger, more charismatic species such as birds and mammals, and the work of scientists on big processes and patterns in biodiversity - macroecology - is a small proportion of total activity.

 

Slide12.jpg

 

A key area of strategic development is focused on acceleration of biodiversity description and discovery, using forest insects as a pilot group: Breaking the Taxonomic Barrier, an important complement to the digital initiatives.

 

Digitisation - the beginning of the surge

 

We need to unlock the potential of our collections through digitisation to speed up this science -  transforming the labels and individual records into large datasets.  However, this is a major task that requires extensive collaboration and significant resources. Our efforts so far have digitised around 3% of our collection of 80 million specimens - and of this, only some is in suitable form for scientific analysis.

 

Slide13.jpg

Our response is the development of the Digital Museum: Collections. Over the last year, we have successfully transformed our approach from individual research projects to an efficient processing line with our iCollections project: we've digitised 500,000 UK butterflies and moths with an expert team who have taken images and transformed data for scientific use, taking 2 minutes per specimen and costing £1 per specimen.

 

1311Leicester.039.jpg

 

Our current project is the rapid digitisation of 70,000 plant specimens on a conveyor-belt digitiser, followed by transcription and database development, as a pilot towards the creation of a Digital Herbarium to allow wider and much more ambitious scientific use.

 

picturae.jpg

 

And we have already put millions of printed pages into digital form as part of the collaborative Biodiversity Heritage Library -  NHM's efforts are part of a global network of digitisation - iDigBio in the US has digitised 25 million specimens from a network of institutions, just as one example.  These efforts amount to the development of big data for biosphere science in coming years.

 

The need for citizen science

 

However, there is a significant challenge in transcribing the label data from older scripts - it cannot be done automatically and until we have transcriptions, these older collections are inaccessible to science

 

15903365787_67d188e362_o copy.jpgAnd this is where the involvement of thousands of volunteers can be essential in transforming collections into a scientific data resource: citizen science and transcription.  Some of this is through online crowdsourcing portals, such as Zooniverse, where we are experimenting with the transcription of our digitised collections.  However, we are also looking at how we can make crowdsourcing a live event: at our annual Science Uncovered event in September 2014 we welcomed 10,000 members of the public into the NHM to see science at first hand and one of the activities on offer was citizen science transcription of beetle specimens.

Screen Shot 2015-02-15 at 11.08.09.jpg

 

Results and data use

 

New science is emerging from these growing digital resources: the beginning of a new type of science possible from this investment.  Steve Brooks, Angela Self and Flavia Toloni from the NHM, with Tony Sparks from Coventry University, have used the digitisation of butterflies and moths to look at how UK butterflies are responding to climate change.  There are good observation data for the UK from the 1970s, but collections hold the key to looking further into the past. They analysed data from 2,630 specimens of four species of British butterflies (Anthocharis cardamines, Hamearis lucina, Polyommatus bellargus and Pyrgus malvae), collected from 1876 to 1999. The data on collection dates gives a record of the first emergence of these species each year and the research shows a good relationship between higher early spring temperature and early emergence dates.

 

1311Leicester.040.jpg

 

Big Data and Open Data

 

The data produced from our digitisation work is being released through a new Data Portal, enabling scientists to find information of interest and to download datasets for research on Open Data principles - the NHM has adopted a policy of being Open by Default.

 

dataportal.jpg

The broad challenge of global biodiversity

 

New work is using much broader datasets to understand big changes across multiple ecosystems: Andy Purvis and his team in the PREDICTS project which is taking data from multiple sources, including collections, to look at patterns of how local biodiversity typically responds to human pressures such as land-use change, pollution, invasive species and infrastructure, and aims to ultimately improve our ability to predict future biodiversity changes.  Data is being assembled from a wide range of biomes.

 

Predicts.jpg

 

The future of the Digital Museum for the Biosphere: Open Data; Big Data; Community Data

 

The future for the Digital Museum of the Natural History Museum is based on a new model for the development and use of collections data through digitisation:

 

  • Open Data that are available to scientists all around the world for collaboration and research.  We need to involve as wide a range of expertise in thinking about science for the future.  Museums will continue to be a key resource as a focus for evidence and extended collaboration;


  • Big Data that cover whole ecosystems over long periods of time, based on the solid evidence base of collections and extending from population and species to molecules and DNA.  Internationally, there are 4.5 billion specimens of 1.9 million species from 300 years of collecting. We need to use these data effectively but also work out new ways of gathering data on the millions of other species that will allow  understanding to help humanity to  tackle the challenges of the future in terms of environmental change and sustainable use; and


  • Community Data that are based on the involvement of a wide spectrum of public participation, from schoolchildren to students to communities: online, in museums and in the field. This is science for everybody, from basic curiosity, to observation and recording, to data development and interpretation, from appreciation to understanding practical application for the future.

 


 



0

One of the most prestigious international gatherings of scientists, policy specialists, journalists, science communications professionals and the US public is the annual meeting of the American Association for the Advancement of Science.  It attracts several thousand participants every year: in 2015 it is in San Jose, California from 12-16 February.

 

The NHM is represented this year by Professor Ian Owens, Director of Science, who is co-organiser and speaker at a session Unlocking Natural History Collections to Model the Biosphere in collaboration with NHM's sister institution the Smithsonian National Museum of Natural History (NMNH) from Washington D.C.

 

Session information


Unlocking the Vault: Digitizing Collections To Understand Global Biodiversity
Saturday, 14 February 2015: 3:00 PM-4:30 PM, Room LL21C (San Jose Convention Center)
https://aaas.confex.com/aaas/2015/webprogram/Session9604.html


Ian and Jonathan Coddington (from the NMNH) will be speaking on the potential of collections data in addressing global environmental challenges. 4.5 billion specimens in natural history collections are a key resource for science supporting our future on Earth.  Unlocking this valuable data source through digitisation will support sustainable use of biodiversity, better understanding of parasite threats to human health, and essential insights for the development of new crops to feed a growing population.

 

Plebejus argus.jpg

 

 

Both NHM and NMNH have ambitious programmes of digitising collections - creating images, data and DNA evidence - to enable much wider scientific use by researchers around the world.   The future of this bold enterprise will be mapped out in the session on at AAAS on Saturday 14 February, showing how  major institutions are creating genomic collections and digitizing biological data to make it openly available, often with the help of thousands of online citizen scientists. Researchers are harnessing the potential of collections as an immense dataset on the planet’s past and present, used for modelling the future for better-informed policy. 

 

beetle.jpg

 

Digitization, genomics and citizen science are enabling scientists to work across multiple collections and millions of specimens. The collections highlight geographic, temporal, morphological, and genomic patterns of diversity across a vast range of species. By combining collections data with new modeling and data visualization tools, analyses of biodiversity are possible on a scale never before seen. 

 

Picture3.jpg

Society needs systems that deliver the best possible estimate of the abundance, distribution and functional role of all species, from the recent past to projecting into the future. Delivering this requires an unprecedented level of cooperation by natural history organizations and the wider community.

 

Picture2.jpg

 


  

https://aaas.confex.com/aaas/2015/webprogram/Session9604.html


0

Hi Fossil lovers!      Tips to help you identify your fossils:


Fossil Guide iBook - a useful resource for the basics about fossils and how to identify many of the common ones.

  • All the major groups of fossils are illustrated with clear diagrams and beautiful, pin-sharp photographs of real specimens.
  • Suitable for beginners as well as those with some knowledge, this authoritative and helpful multi-touch book has been produced by the Open University, in collaboration with the Sedgwick Museum, Cambridge.
  • It covers invertebrates, vertebrates and plants, and each fossil group is illustrated with a gallery of photos.
  • Some specimens are presented as 360-degree rotational objects to provide a tactile feel, and the detailed structure of other fossils is captured with high-resolution views of thin sections under a microscope.
  • The Introduction includes useful advice and tips on responsible fossil collecting. As well as being suitable for the educated amateur, this book will also be useful for teachers and should provide a stimulus for children interested in fossils and the wonderful world of geology.

 

Have fun and let me know how you get on!

Best wishes,

Fiona

 

Resourceweblink
Minerals under the Microscope coverhttps://itunes.apple.com/gb/book/fossil-guide/id765391277?mt=11
0

A team of geologists from the Museum and Imperial College are in Mexico carrying out  fieldwork at two of the most active volcanoes in the world: Popocatépetl (Popo) and Colima. Catch up with their adventures in this series of blogposts.


Popo times are over (never mind the blog title), but for Chiara and me the journey continues: Colima volcano, here we come! We have planned three days in Colima, and since winter in Mexico is generally a time free of clouds and rain, we are fairly confident that we will get some great shots of this impressive volcano. But alas!, as we arrive at the tiny Colima airport, we find that the view of Colima volcano is somehow underwhelming:

 

Comala.jpg

Harder than spotting lava at Popocatépetl's flanks: Whoever finds Colima volcano in this photograph is a true eagle-eyes and deserves an honorary display in the Museum's bird galleries.

 

The weather in Colima remains tropically hot, damp and cloudy for the next one and a half days. Chiara makes the best out of the bad conditions by giving a spontaneous talk about her work at the University of Colima, while I use the time to give you some background information about Colima volcano:

 

Fuego de Colima, as the volcano is called, has been very active in historical times. There were large eruptions about every 100 years in the past, which directly leads us to the alarming part of the story: the last major eruption took place in 1913! And the volcano has certainly woken up in the past few years, with volcanic domes - very viscous lava forming a plug in the crater - frequently being built and subsequently destroyed. (By the way, this is exactly the same type of activity as we see at Popocatépetl, even though the volcanoes are very different in other aspects.)

 

FuegoNevado0.jpg

Fuego de Colima, and its snowcapped older sister, Nevado de Colima, form an impressive mountain mass towering above the State of Colima. Fuego de Colima has been very active in the past few months.

 

Especially since last summer, Colima has produced several small- to medium-sized eruptions every day; one of the largest since 2005 happened while we were peacefully collecting pumice at Popo:

 

 

It seems that Fuego de Colima is preparing for something bigger in the foreseeable future, and authorities are on alert in order to protect the ~300,000 people living in the vicinity of the volcano.

 

After intense rainfall during the second day, the weather clears in the evening, raising our hopes to finally see some action. And as it turns out, we get even more action than we were daring to dream of: we get offered a flight in a small airplane around the volcano on the third day of our stay. Obviously, this is an offer we can't refuse, especially after we are being reassured that the pilot is very experienced and knows how close he can get to the crater without getting into eruptive trouble. So off we go! Take a look at the stunning pictures we were able to take:

 

nodome3.jpg

Colima volcano, airplane view: gases are constantly emitted from the crater region. The surface of this area is several hundred degrees celsius.

 

nodome2.jpg

Even though there is some zoom involved in the picture, we are disquietingly close to the place where the explosions happen. The channel in the foreground of the picture is in fact a lava flow descending Colima's SW flank.

 

topview.jpg

A steamy view to the North, with the newest lava flow going down the left side of the picture. The very top of the volcano is a flat or even slightly concave surface (just as a proper crater should be)…

 

Dome2013.jpg

…In December 2013, the summit looked very different. Here, we can see a fully intact, hemispherical dome. The explosions that have taken place since then have literally blasted off the cap of the dome.

 

Afterflight.jpg

After the flight: Chiara is happy about what she has seen, as well as about being safely back on solid ground.

 

As soon as we are back at the airport, the volcano starts an impressive performance of steam and ash emissions. We congratulate ourselves that we are not in an airplane above the top right now and take more pictures!

 

Eruption.jpg

This eruption column is about 4 km high and contains very little ash, as can be gathered from the bright colour. However, if you look closely, you can see some ash falling out of the cloud towards the ground.

 

in the mood.jpg

Night falls, and Fuego de Colima continues its show.

 

We could show you plenty more pictures of Colima erupting, since it continued similarly throughout the rest of our stay (and is still ongoing!) and we were quite trigger-happy. But this blog entry is already quite long, so if you want to see more of Colima volcano, we would like to refer you to the freely accessible webcam that delivers live, high-quality pictures right to your computer screen. As I said, there are several eruptions like the ones shown above every day, so if you spend some time with it, chances are that you will be live witness of a proper volcanic eruption!

 

Sadly, our time at Colima is already over now, and also our field campaign draws to a close. Stop by here shortly for final, picturesque remarks about our work in Mexico.

0

A species of bryozoan transplanted to an area with increased ocean acidity has been found to grow at half the rate of those living in normal ocean conditions.


Bryozoans are coral-like animals that live in colonies and build their skeletons out of calcium carbonate. An international team including Museum researcher Dr Paul Taylor transplanted several budding colonies from their normal homes in the Mediterranean to an area near an active volcanic vent in Italy.

 

The undersea vent expels heat and carbon dioxide, simulating the global surface ocean acidity predicted for the year 2100 as a result of increased anthropogenic carbon dioxide emissions. According to Dr Taylor:

Entire ecosystems are threatened by ocean acidification, and this will have economic consequences because animals such as bryozoans are often habitats for the juveniles of commercially exploited fishes and crustaceans or may be in their food chains.

20150211 Bryozoan Calpensia nobilis © Lombardi et al..jpg

The bryozoan Calpensia nobilis showing normal growth at the leading edge © Lombardi et al, 2015.

 

During a three-month experiment, the bryozoan colonies around the vent suffered slower growth rates, the absence of some growth stages, and the corrosion of their skeletons. However, individual zooids – the tiny creatures that build the colony – were longer than normal.

 

Dr Taylor thinks this could be an indication of adaptation by the bryozoans to the changing environmental conditions. The colonies seemed to invest more energy in completing zooids that had already started to form rather than budding new generations. In other words, they were strengthening the existing colony rather than expanding.

 

Longer studies are needed along with more detailed information about how the colonies are reacting to possible future scenarios. Said Dr Taylor:

With this information, better predictions could be made of organism survival and evolution, and thus ecosystem changes, loss or survival in a changing world.

The research is published today in the journal Royal Society Open Science.