Skip navigation

Manage categories

Close

Create and manage categories in Life sciences news. Removing a category will not remove content.

Categories in Life sciences news
Add a new category (0 remaining)

Manage Announcements

Close

Create and manage announcements in Life sciences news. Try to limit the announcements to keep them useful.

Announcements in Life sciences news
Subject Author Date Actions

Life Sciences

Yellow-necked mouse

Follow our posts for the latest news about the Life Sciences Department, from the most recent publications, awards and conferences to updates from life scientists working in the field.

More about the Life Sciences Department

Recent posts about the life sciences

Refresh this widget
Jun 24, 2015 Neglected Tropical Diseases on display at the Museum

On 25 June the Museum will open its doors to a special event in celebration of the international and global commitment between countries, industry, charities and academia to work together against Neglected Tropical Diseases (NTDs). This commitment was first agreed upon in London in 2012 and has since been termed the London Declaration On NTDs.

 

By joining forces to fight NTDs the world would achieve a huge reduction in health inequality paving the way to sustainable improvements in health and development especially amongst the worlds poor. The 25 June sees the launch of the third progress report, 'Country Leadership and Collaboration on Neglected Tropical Diseases'. A pragmatic overview of what has been done, what has worked, what hasn't and what key areas still need to be achieved.

 

The Museum is thrilled to be participating in this event, having a long-standing history in parasitic and neglected tropical disease research. As both a museum and an institute of research our mission is to answer questions of broad significance to science and society using our unique expertise and collections and to share and communicate our findings to inspire and inform the public. We are excited to be hosting a day of free public events on Neglected Tropical Diseases.

 

What are NTDs?

Neglected Tropical Diseases are termed in this way because they infect hundreds of thousands to millions of people, predominantly the world's poorest and most vulnerable communities, and yet receive comparatively little funding for basic, clinical or drug-development research and even less attention from governments, people and the media of affluent countries. Until now!

 

In total the WHO has identified 17 diseases or groups of diseases that fall within this category.

 

NTD slides from Bonnie Webster.jpg

World Health Organization has identified 17 Neglected Tropical Diseases. 10 of these have been targeted for control and elimination by 2020

 

The 10 selected by the WHO for control and elimination by 2020 are:

 

  1. Onchocerciasis (aka river blindness): A blood worm infection transmitted by the bite of infected blackflies causing severe itching and eye lesions as the adult worm produces larvae and leading to visual impairment and permanent blindness.
  2. Dracunculiasis (aka Guinea-worm disease): A roundworm infection transmitted exclusively by drinking-water contaminated with parasite-infected water fleas. The infection leads to meter-long female worms emerging from painful blisters on feet and legs to deposit her young. This leads to fever, nausea and vomiting as well as debilitating secondary bacterial infections in the blisters.
  3. Lymphatic filariasis: A blood & lymph worm infection transmitted by mosquitoes causing abnormal enlargement of limbs and genitals (elephantiasis) from adult worms inhabiting and reproducing in the lymphatic system.
  4. Blinding trachoma: A chlamydial infection transmitted through direct contact with infectious eye or nasal discharge, or through indirect contact (e.g. via flies) with unsafe living conditions and hygiene practices, which if left untreated causes irreversible corneal opacities and blindness. Trachoma is the leading cause of blindness in the word.
  5. Schistosomiasis (aka bilharzia): A blood fluke infection transmitted when larval forms released by freshwater snails penetrate human skin during contact with infested water. The infection leads to anaemia, chronic fatigue and painful urination/defaecation during childhood, later developing into severe organ problems such as liver and spleen damages, bladder cancer, genital lesions and infertility.
  6. Visceral leishmaniasis (aka Kala azar): A protozoan blood parasite transmitted through the bites of infected female sandflies which attacks internal organs which can be fatal within 2 years. 
  7. Soil-transmitted helminths: A group on intestinal worm infections transmitted through soil contaminated by human faeces causing anaemia, vitamin A deficiency, stunted growth, malnutrition, intestinal obstruction and impaired development.
  8. Leprosy: A complex disease caused by infection mainly of the skin, peripheral nerves, mucosa of the upper respiratory tract and eyes.
  9. Chagas disease: A life-threatening illness caused by a blood protozoan parasite, transmitted to humans through contact with vector insects (triatomine bugs), ingestion of contaminated food, infected blood transfusions, congenital transmission, organ transplantation or laboratory accidents.
  10. Human African trypanosomiasis (aka sleeping sickness): A protozoan blood parasitic infection spread by the bites of tsetse flies that is almost 100% fatal without prompt diagnosis and treatment to prevent the parasites invading the central nervous system.

 

They were selected because the tools to achieve control are already available to us and, for some, elimination should be achievable.

 

Take the Guinea Worm:

 

Guinea worm Peter Mayer.jpgGW (SKnopp).jpg

Guinea worm infection - from over 3.5 million people infected in the 80s to less than 130 cases in 2014. Set to be second human disease to be eradicated after smallpox (photo credits David Hamm&Peter Mayer)

 

In the 1980s over 3.5 million people were infected with Dracunculiasis (i.e. Guinea worm disease), with 21 countries being endemic for the disease. Now, thanks to the global health community efforts and extraordinary support from the Carter Center, only 126 cases were reported in 2014 and only 4 endemic countries remain: Chad, Ethiopia, Mali and South Sudan! If the WHO goal of global eradication of Guinea Worm by 2020 is met then Dracunculiasis is set to become the second human disease in history to be eradicated (the first, and only one, being smallpox). Not bad for an NTD! But there are still challenges!

 

At the Museum we have a long history of working on health related topics. Indeed our founding father Sir Hans Sloane was a physician who collected and identified plants from all over the world for the purpose of finding health benefits - in fact he developed chocolate milk as a health product.

 

Today we have a vast and biologically diverse collection of parasites and the insects/crustaceans/snails/arachnids that carry and transmit them. These are used by researchers both in the museum (such as myself and colleagues) but also internationally through collaborative work.

 

ZEST Zanzibar.jpg

Collaboration is key - Zanzibar Elimination of Schistosomiasis Transmission (ZEST) programme key players: the Zanzibar Ministry of Health, Public Health Laboratories Pemba, the World Health Organization, SCI, SCORE, Swiss TPH, NHM and others

 

We are immensely proud of our collections and the work we do in this field especially of the biological information we can contribute to health programmes in endemic countries. One of our most exciting contributions is to the Zanzibar Elimination of Schistosomiasis Transmission (ZEST) programme where we are working in collaboration with the Zanzibar Ministry of Health, various NGOs, the World Health Organization and the local communities to identify and implement the best tools and methods to achieve schistosomiasis elimination in Zanzibar. This would be the first time a sub-Saharan African country would achieve schistosomiasis elimination. Fingers-crossed we are up to the challenge! You can read more about this project in an earlier post on our Super-flies and parasites blog

 

On Thursday we are bringing out our Parasites and Vectors specimens to showcase them to the public galleries and answer any questions relating to these fascinating yet dangerous organisms. Our wonderful scientists and curators will be on hand to talk to people about our collections and research as will collaborating scientists from the London Centre of Neglected Tropical Disease Research who will talk to you about the diseases and the challenges faced to achieve the WHO 2020 goals. Please do pop by and say hello, come and look at our specimens and help us raise awareness of these devastating diseases and the fight to control and eliminate them.

 

Fieldwork_TZ_FionaAllan_SCAN.jpg

We are working together with schools, communities, government and research institutes to fight Neglected Tropical Diseases. Schistosomiasis fieldwork photo with the team from the National Institute for Medical Research in Tanzania

Jun 17, 2015 What have the Orchid Observers been up to? | Orchid Observers

This week we get an update on the Orchid Observers project, from Project Officer Kath Castillo.

 

It’s been a busy time for Orchid Observers! The project got off to a great start when the website went live on the Zooniverse platform on 23 April; the very first of the season’s field records was uploaded on day one!

 

Orchid Observers Team.JPG

The Orchid Observers team, from left to right: Jade Lauren Cawthray, Jim O’Donnell (Zooniverse web developer) Lucy Robinson, Mark Spencer, John Tweddle, Kath Castillo, Chris Raper and Fred Rumsey

 

At the time of writing this blog we now have 567 registered users on the website who have enthusiastically completed 11,044 classifications, by verifying and transcribing data for our historical specimens and identifying species and flowering stages for around 700 photographic records already submitted by participants. The field records collected span the country, from Cornwall to Perth in Scotland, and from Pembrokeshire across to Norfolk. So far, for early-purple orchid (Orchis mascula) and green-winged orchid (Anacamptis morio) approximately 9% of the records are from new/unknown sites (as measured by 2 km square/tetrad); this is valuable information, particularly for green-winged orchid which is considered at risk of extinction in the UK.

 

Anacamptis morio - herbarium.jpg

A herbarium sheet of green-winged orchid (Anacamptis morio); one of around 10,000 historical specimens available online for data verification or transcription

 

Whilst we have not been able to fully compare the Orchid Observers phenology data with our museum records (as yet, the relevant, verified, 2015 UK weather data has not been released) we have already been able to see that the median date of this year’s flowering of two species (early-purple and green-winged) is at least 10 days earlier than the museum data (which mainly covers 1830 to 1970). These are early figures only, and the full data set will be analysed later this year.

 

We are immensely grateful for the time and good will of all our participants - without this effort we would not have been able to collect this data. And we’ve still got the rest of the summer to collect more data for all our 29 species in the survey!

 

The Orchid Observers team had a very busy in May, showcasing the project to the public at the Lyme Regis Fossil Festival, in Dorset and on Fascination of Plants Day and at Big Nature Day at the Natural History Museum.

 

Orchid Observers at BND.jpg

Orchid Observers at Big Nature Day

 

Some of us in the team have also managed to get out to various sites to record and photograph orchids ourselves. Here’s a snapshot of our recent activities:

 

Visit to Stonebarrow Hill, Dorset, 1 May

 

After a busy day on the stand at the Lyme Regis Fossil Festival, Kath, Mike and Chris drove up to the National Trust’s reserve at Stonebarrow Hill to look for orchids and found two beautiful ancient hay meadows of flowering green-winged orchids (Anacamptis morio), including the occasional white variety in a sea of purples.

 

Kath photographing A. morio near Lyme. MW.jpg

Kath photographing green-winged orchids (Anacamptis morio) at Stonebarrow Hill, near Lyme

 

Green-winged Orchid_Dorset_01_05_2015_ Kath Castillo (3).JPGGreen-winged Orchid_Dorset_01_05_2015_ Kath Castillo (6).JPG

Green-winged orchids (Anacamptis morio) at Stonebarrow Hill

 

BBC News report at Darland Banks, Kent, 19 May

 

Next up, Mark and Kath travelled down to Darland Banks, in Kent, to film a piece for BBC South East News, with reporter Charlie Rose. The south-facing chalk grassland slopes were abundant with the man orchid (Orchis anthropophora). You can see the film piece here.

 

Man Orchid_Darland_19_05_15KCastillo.JPG

Orchid Observers in the News: The man orchid (Orchis anthropophora) at Darland Banks

 

Visit to Box Hill in Surrey, 29 May

 

At the end of May, and despite a weather warning to expect heavy rain later in the day, a group of us left Victoria station in the morning sun and headed down to Box Hill to search for and photograph orchids. Box Hill forms part of the North Downs and is a well-known site to spot many of our wild orchids – there are around 17 species here. We were able to find and photograph 5 of our 29 target species: common spotted-orchid (Dactylorhiza fuchsii), common twayblade (Neottia ovata), bird’s-nest orchid (Neottia nidus-avis), white helleborine (Cephalanthera damasonium) and fly orchid (Ophrys insectifera), by the time the skies darkened. Some species, such as the bird's-nest and fly, are hard to find at the best of times, and were particularly difficult to photograph in a thunderstorm!

 

Photographing Common spotted orchids at Box Hill.JPG

Lucy, Jade and Mike collecting photographic records for common spotted-orchid (Dactylorhiza fuchsii)

 

Birds-nest at Box Hill.JPG

The beautiful bird's-nest orchid, (Neottia nidus-avis) in woodland

 

orchid observers at Box Hill.JPG

Drenched but happy: orchid observers Jade, Sally and Lucy at Box Hill

 

We’ve also been busy filming a piece which has just launched on the Museum’s citizen science Orchid Observers webpage. Kath organised with the Museum’s Broadcast Unit team to film a short piece to explain the research behind the project. So, mid-May saw Kath, together with Emma Davis and Hannah Wise, setting off early one morning with two carloads of film equipment, a group of Museum volunteers and Mark Spencer. The team went to Oxfordshire, to a couple of the Berkshire, Buckinghamshire and Oxfordshire Wildlife Trust’s finest nature reserves. We are very grateful to BBOWT’s Giles Alder and Laura Parker for hosting us.

 

Find out about why the Orchid Observers research is so important by watching our film here.

 

Filming for Orchid Observers.JPG

Filming for Orchid Observers in Oxfordshire

 

Kath Castillo

 

Kath is a biologist and botanist working as the Orchid Observers project officer and along with the Zooniverse web team developed the Orchid Observers website. She now tries to get out into the field whenever she can to find and photograph wild orchids!

Jun 8, 2015 Big is beautiful in the world of flies

Posted on behalf of Erica McAlister, Curator of Diptera at the Natural History Museum.


I've just recurated an entire family of flies – and in only three days! It's not often I can do that (I have been recurating the world bee-fly collection for over three years now and it's still ongoing), but then there were only 14 species of this family in the Natural History Museum collection. That doesn't sound like a lot, but after all the shuffling around over the last 40 years with the taxonomy there are only 20 described species within 2 genera.

 

So in terms of species numbers, it’s a very small family... but in terms of individuals, they are far from small. The family I am talking about are Pantophthalmidae, and they are some of the largest flies on the planet (although I think that Mydidae can rival them). There is no real common name; they are more often than not shortened to Pantophthalmid flies, but are sometimes referred to as timber flies or giant woodflies.

 

And for such large creatures we know very little about them. This family is considered to be within the infraorder Stratiomyomorpha, but they have not always been positioned here. Originally they were classified within the Tabanidae – the horseflies – and do superficially resemble them (just on steroids) but there are other differences. They were then moved, along with the Xylophagidae, into Xylophagomorpha, but this infraorder is no longer used, with Pantophthalmidae now being subsumed into Stratiomyomorpha leaving Xylophagidae to roam free along the taxonomic highway (Fig.1).

 

Pantophthalmidae are thought of as being in a relatively stable position snuggled alongside the Stratiomyidae (soldierflies) and Xylomyidae (wood soldierflies). However, I believe some recent work by Keith Bayless of North Carolina State University has now placed the freewheeling Xylophagidae into Tabanomorpha. Everyone up to speed?

 

panto+phyl.jpg

Figure 1. Tolweb organisation of Brachycera.

 

Now we have cleared up the higher taxonomy let's move onto distribution. They have only been found in the Neotropical region from Mexico down through Central America and down through Brazil and Paraguay and across to Venezuela and Columbia. And even though this is a vast area, they are infrequent in most collections.

 

The key work for this group was undertaken by Val in 1976. He states that these are rare in the collections, but in order to review all of the species and the types, you need to visit 23 different museums (this figure I presume has grown). That is a lot of effort for a handful of species but that would make a great road trip Although our collection goes back hundreds of years we have only 132 pinned specimens but we do have some important type material (Fig. 2). However we are still missing some of the species and one of the genera!

 

species-table.jpg

Figure 2. Species in the Museum and whether type material is housed here.


I've always liked this group of flies because they are just so big, and we have actually had some fresh material that comes from some French Guiana material donated to the Museum. It has been sitting there patiently for the last couple of years waiting to be identified and now seemed the ideal time. They had been found by our volunteers, who were surprised by these beasts, as they were so much larger than all the other specimens in the pots.

 

These flies, as already stated, are big. Pantophthalmus bellardii (bellardi 1862) with its wings spread, can reach 8.5cm in width. Fig.3 gives you an idea of their robust and chunky bodies … we found seven specimens in the donation (of about 50 samples).

 

Untitled-1.jpg

Figure 3. One of the glorious specimens - Pantophthalmus bellardii (bellardi 1862).

 

The adults are sexually dimorphic with the males having holoptic heads (all eyeballs!)

 

Untitled-2.jpg

Figure 4. The differences between the males and the female heads of Pantophthalmidae.

 

And they have beaks! Actually these are a very useful diagnostic feature…

 

beaks.jpg

Figure 5. Beaks of the Pantophthalmidae (from Val 1975).

 

The immature stages are not known from most of the species although we have a range of pinned, dry and spirit material of the larvae. And they too are big, like their mothers and fathers, but we have even fewer of them in the collection (Figure 6 & 7).

 

Untitled-3.jpg

Figure 6. Pantophthalmid larvae in relation to adult (abdomen shown).

 

Untitled-4.jpg

Figure 7. The Museum spirit collection of Pantophthalmidae.

 

Why do we only have one jar? One of the problems is that the larvae are wood borers and inhabit galleries that are carved horizontally into the tree – dead or living depending upon the species. We still really don’t know what they are feeding on but many people believe that it could be fermenting sap. Others believe that the diet is a mixture of wood (either dead or in the process of dying) and micro-organisms.

 

Zumbado writes in his work from 2006 that they seem to prefer mucilaginous trees such as kapok or sap-producing trees such as figs. He goes on to describe how noisy these little critters are – several hundred may be in one trunk and they can be heard munching away from several metres.

 

The larvae have very robust head capsules and massive mandibles – they are some of the largest larvae I have seen (of all insects). When I read accounts of how many can be seen in one tree, I am quite overcome with envy. We don’t have many in the collection – one jar as shown – but it is a mighty jar. I don’t think I am allowed to say what exactly was said by various colleagues when we brought out some of the specimens but, suffice to say, they were impressed.

 

This collection was in a sorry state in old drawers and on slats. These are problematic because the pins are so firmly wedged that when you try and remove the pin from the board you often damage the specimens. The specimens themselves were showing some early signs of damage with verdigris on some of the pins (Fig. 8) Verdigris is when the lipids in the insect react with the copper in the pins. Nowadays we use stainless steel pins, so this doesn't happen, but most of the specimens in the collection are mostly older even than me.

 

verdigris.jpg

Figure 8. Verdigris on pins.


The first thing that I do when I recurate a collection is to find all of the recent as well as the historical literature in catalogues and monographs, and update the database. The Museum database for this family had not been edited for at least 20 years. But luckily, when going through the literature, I discovered that with this family, not a lot had happened in that time. But our records were still inaccurate, and for a family with very few species people kept changing their mind about the number of genera and where the different species sat. Sorting that out took the most time in terms of overall curation, as there were so many new combinations and I had to be certain of all the taxonomic rearrangements. You should have heard my sighing as I was typing in the data (I promise it was just sighing).

 

Remember that there were only 20 described species of which we had (past tense is important here and I’ll come back to that) only 15? Well, the number of taxonomic records we now have in the database of all the original combinations and numerous synonyms (the many, many synonyms) is about three times as many as the actual number of species (Fig. 9).

 

taxa+names.jpg

Figure 9. Taxonomic names for genera and species.

 

Once this was sorted out, I started on the production of the labels. I have to produce an initial first draft of the list of species names (Fig. 10) as I need to ascertain where and what all of the types were, as well as how many unit trays of each size are needed. I have many lists scattered around my desk so one more can’t hurt…

 

Untitled-5.jpg

Figure 10. Lovely lists of the species of Pantophthalmidae in the Natural History Museum Collection.

 

N.B. See – hardly any valid species names without synonyms!

 

Next I needed to make my unit trays up. My lists have codes on them indicating what the type was and how many of which size trays – there is an awful lot of organising with curation and it definitely fulfils my OCD tendencies…We have three sizes of unit trays that we use for Diptera recuration but somehow I knew that I probably wouldn’t be needing any of the very small A trays (Figure 11).

 

Untitled-6.jpg

Figure 11. Unit trays –C, B and A.

 

N.B ok that is quite a nerdy photograph!

 

The new sparkly labels (ok the sparkly bit is a lie) were placed into the unit trays and then I started transferring the material across. As the specimens were moved they were inspected for damage – any verdigris removed and any legs etc. placed into gelatine capsules. Three new main drawers later and the collection was now housed in museum-standard drawers, conservation-grade trays and labels, completely updated on the database and new material incorporated into it (Fig. 12).

 

Untitled-7.jpg

Figure 12. The largest smallest recuration project.

 

So let’s go back to this new material consisting of just a few specimens. Not a lot you may think – but remember this collection is not very big. For large flies, they were slightly difficult to ID. In fact, as the samples had come out of the window traps (the specimens collect in alcohol) they were very greasy.

 

Chris Raper, a fellow Dipterist at the Museum and lover of these flies, suggested that I give them a bath in ethyl acetate. I was a little nervous about leaving these precise specimens overnight in this rather noxious fluid. But lo and behold! What wonders were to great me the next day! Wonderful, they were – just wonderful. And suddenly we were able to see features that were previously hidden, such as thoracic patterns and, rather more importantly, hairs on the eyeballs. This feature alone split the two different genera and so we realised that for the first time, our collection now has ONE Opetiops alienus (Fig. 13). I believe this is also the first time that it has been collected from French Guiana.

 

Untitled-8.jpg

 

Untitled-11.jpg

Figure 13. Opetiops alienus – check out not only the hairy eyeballs but also the beak!

 

So one database updated, one collection rehoused and once more new material has been added to the collection. Happiness reigns in the Land of the Curator.

Apr 30, 2015 #Worldrobberflyday

OK, I have decided to create #Worldrobberflyday. All the time now, we hear that this large mammal or that large mammal has a 'day', and that got me thinking. Buglife have an invertebrate of the month, but even they are not very often the lesser-known insects, including the flies.

 

And I wanted global. Let the world celebrate! Why is it always the large stuff or the pretty (and, in my opinion, slightly less important) species? So I thought about it and decided it was about time that we championed more aggressively the rights of the small and endangered flies. These creatures are some of the most charismatic animals on the planet. The robberflies, or Asilidae, are truly worth celebrating for their looks, for their behaviour, for their good deeds to us, and because many of them are threatened.

 

The UK boasts 28 species of Asilidae (OK, so that's not a lot in terms of flies, but hold on – we have only 30 native terrestrial mammals, of which 17 are bats and 2 are native marine mammals). Globally there are more than 7,500 species, and as such, it is one of the largest families of insects today. In fact Torsten Dikow, a world expert on this group, has them as the third most speciose group of diptera. This is a group, therefore, that has a large impact on the environment in which they live.

 

Asilidae are Brachycerans (Fig. 1), which are the more advanced and robust flies. Asilidae are known from the Jurassic era, but some of the more important finds are from the Cretaceous, including those from the Crato Formation of north-eastern Brazil (approximately 112 million years old). This site is truly extraordinary in terms of the invertebrate remains that were found there (and just another reason for me to get back to Brazil!).

 

taxonomy.jpg

Figure 1. Phylogenetic arrangement of Diptera showing the more advanced Brachycerans and the position of the Asilidae (robberflies) within it.

 

It was again Linnaeus, or Linne, who described these flies in his 10th edition (1758) Systema Naturae when he erected the genus Asilus. Within this, eleven species were described and then a further four were added in the 12th edition. You may be unsurprised to know that most of these are no longer in the original genus! Ten have been moved to other genera, three we are unsure of due to the original descriptions being vague, so that leaves only two in the genus.

 

However, the species Asilus crabroniformis, commonly called the hornet robberfly in the UK – and the type species of the family – still sits within this genus in all its magnificence. The division of flies into different families came later with Latreille, a very eminent entomologist who tried to put some more organisation into the entomological hierarchy in 1802. Since then we have increased the number of species and have split the family into many subfamilies –14 in fact (Fig. 2) But as regular readers know, Dipteran taxonomists are still not satisfied and expect more movement in the future.

 

subfamilies.jpg

Figure 2. Subfamilies within Asilidae (image is Tigonomiminae © Thomas Shahan).

 

Even still, you can comprehend how much work has gone on into understanding the relationships within this family so far.

 

Moustaches and mouthparts

 

So why are people interested in these flies? Well once more, this is a family of flies that rock! And these rock harder than most. All armed with moustaches and powerful piercing mouthparts, these predators are aptly named, as they truly are the most vicious and effective aerial predators. These flies are venomous, probably both as adults and as larvae (although we know so very little about the offspring). The adults are able to catch, then sedate, their prey whilst on the wing, suck out the contents and then drop the husk of what was once a living breathing entity. It's almost poetry.

 

And to be fair, to catch these little predators you often have to become a predator yourself. There is no majestic leaping around the countryside, freely swinging your nets with wild exuberance: instead you must 'become the fly'. You stalk it; determine where it rests and then strike. If you are me, this is often followed by a squeal of delight or a wail of despair. I once spent a glorious afternoon on one of the Isles of Scilly at the beach (obviously working very hard) trying to stalk these flies. My volunteer and I tried to work in unison hunting them, and I could almost hear the flies mocking us…

 

The adults are most active during sunny, hot conditions. Again, another reason for loving flies – they have an affinity for the nicer weather conditions.

 

Although these flies range a lot in size, from 2mm to 6cm, they all share distinctive features that help identify the family. The adults have enormous eyes, which is one of the many tools that make them such efficient predators. And it also helps us recognise this family easily. The bulbous eyes and the distinct dip between the two eyes are very characteristic (see Fig. 3). They can swivel their heads around and their eyes can see what's going on behind them as well.

 

eyes.jpg

Figure 3. My, my... what big eyes you have...!

 

Some of them scout amongst the grasses, their rapid wingbeat enabling them to turn whilst hovering. These truly are the stealth-bombers of the insect world.

 

The leptogastriniiae are the skinniest of the Asilidae, with very long bodies and legs. They use these long, gangly first two pairs of legs to catch their prey whilst – we think – using the third pair to stabilise themselves. Not all actively scan like this: some will sit and wait, only darting out to impale their prey when they are ready. If fact, there are several different ways in which they hunt and, as with all good scientists, someone has devised a terminology for all of these (Fig. 4)

 

hunting.jpg

Figure 4. Lehr (1979) from the Geller-Grimm Asilidae site.

 

For that is another characteristic of this group – a well-formed, stout beak often hidden in a luxurious moustache or, more correctly termed, a mystax (Fig. 5).

 

mouthparts.jpg

Figure 5. Mouthparts of a robber fly (Brachycera: Asilidae). an=antenna; cl=clypeus; ip=hypopharynx; li=labium; ls=labrum (epipharynx); m=mystax; ms=maxillae; oc=eye; pm=maxillary palpus © Giancarlo Dessì. Licensed under CC BY NC SA 3.0 US.

 

It is the needle-like hypopharynx (Fig. 5) that pierces their prey. This is not for the faint-hearted, as they often try and pierce the soft parts of the insect, such as the neck or sometimes the eyes. They have this moustache (Mystax – Fig. 5) to help protect their mouthparts from the flailing prey.

 

They don't have to flail for long, though, as the fly injects saliva that contains nerve toxins that paralyse the prey, and proteolytic enzymes that dissolve the insides. They are nasty for insects, spiders, and occasionally a very unfortunate hummingbird, but apart from giving a nasty jab, they are not dangerous to humans. Research done by Adamovic in 1963 found that injecting robberfly saliva into invertebrates kills them instantly, but they never inject venom into humans. There are several researchers in the Natural History Museum who are now studying the venoms within these flies, so watch out for future Museum publications to follow what is happening in this field.

 

But this leads me to one of the first reasons that these flies are very important. It's because they are such good predators. Within the UK, between 1930 and 1933, Hobby produced a list of the prey records (Fig. 6).

 

feeding.jpg

Figure 6. Hobbies lists from Stubbs and Drake 2014.


We have spent the last century working out the prey species and now have a greater understanding of the potential impact these flies can have in helping control populations of species that we often consider as pests – with aphids being a classic example. Although they are opportunistic species, they can have an impact on the overall densities and therefore become the gardener's friends.

 

Flirty flies

 

So let's move on to courtship. As with most creatures, some do, some don't; with some species the males just grab, while others put a fair amount of time and effort into it and have different modifications on their bodies to both attract the opposite sex as well as hold on to them. And it's not just the males that do the flirting. Oh no - there are some females that entice the male.

 

The rather unusual courtship of the British robberfly Choerages marginatus was described by Ian Rabarts in 2009 (paraphrased from Alan Stubbs' rather amusing synopsis on the subject, in his and Martin Drake's book British Soldierflies and their Allies): Firstly the flies recognise that (a) they are the right species, and (b) that they are of the opposite sex (a very good start in most situations to do with copulation leading to fertilisation).

 

Then they check out each other's hunting moves and, if OK, the female stands facing the male in a sort of 'yeah, you'll do' posture. After this, she flies in a slow 'flaunting' circuit (hussy) very similar to that of a prey item (all very kinky). He attacks when he sees her 'shimmer-strip', whereupon she slows down her flight, but flies in an angular pattern. He realises then that this is his lady and adjusts his attack from one of capturing prey to one of copulation.

 

Alan then states in his book: 'Failure [of copulation] results in going back a few steps in the courtship sequence.' A not-unfamiliar event…

 

Bob Lavigne, a collaborator of mine and another international robberfly expert, wrote in 2003: 'It is postulated that courtship first developed when male search flights (which end abruptly with copulation), were consistently unsuccessful.' It sounds so final when it ends with copulation!

 

In fact, reading the literature when it comes to robberfly mating in copulation has been very entertaining. Morgan (1995) records that another species that were just about to do the do were scared off by a sheep! Given the size difference I too in a similar position may have been scared off...

 

But check out Pegesimallus teratodes (Fig.7) – these have amazing structures on their hind legs. These are used in the dance of the males to attract the females –they are indeed the peacocks of the robberfly world.

 

Pegesimallus-teratodes.jpg

Figure 7. Pegesimallus teratodes and its amazing legs.

 

And that is not all that is fantastic about the males. I would be remiss if I didn't mention the genitalia of the males (Fig. 8).

 

Pegesimallus-teratodes-genitalia.jpg

Figure 8. The male Pegesimallus teratodes with his rather impressive genitalia.


And then there are specimens in our collection that we think give us an indication of a courtship story, although I doubt we will ever be able to find out for certain. Take, for example, two specimens of Mallophora infernalis from our collection (Fig. 9). Now, had the female caught the bush cricket and the male had thought:“Excellent! Both food and sex!”? Or, had the male caught the cricket to attract the female? Either way, it was not going to end well for the bush cricket (or in this case for the robberflies).

 

mallophora.jpg

Figure 9. Male and Female of Mallophora infernalis who were caught mid air carrying this bush cricket.

 

So whether there is dancing, waving, differences in wingbeats, or offerings, the end result hopefully is the production of eggs. And blimey, the females have a big range of ovipositors (egg laying tubes) (Fig. 10)!

 

table.jpg

Figure 10. Ovipositors (adapted from Stubbs and Drake 2014).


Now this is where it gets tricky, as we know less about the egg and larval stage than any of the others. And this is the main reason why we should be concerned about these gorgeous creatures – many of the UK species are rare. We have no real idea for many species globally but can only assume that this is the case everywhere. In fact, several of our UK species are protected.

 

However we don't know much, if anything, about many of the species' diet, where they live, development and so on. In Collins' book The Conservation of Insects and their Habitats, he discusses how little is known about the species, despite the fact that they are classed as threatened.

 

Take one of the most charismatic insects in the UK (no bias there) the hornet robberfly Asilus Crabroniformis – a mimic of (you guessed it) a hornet. There is still very little information. Previous work dating back to the 90s states that the eggs were laid in or under the old dung of cows, horses and rabbits, and soil nearby. Maybe the adults (and subsequent larvae) are that flexible in their habitat? The larvae are then thought to feed on dung beetles but again this has only been observed (and not by many authors) during late-stage instars. What do the little ones eat? It is a UK priority species and we need to know more about it. How can we consider conserving a species (if it needs it) if we don't know where it is or what it's getting up to? It's like a wayward teenager.

 

Now, if you want to know more about what is going on with UK robberflies, there are loads of pages giving you what information there is.

There is a nice little piece by naturespot (Fig. 11) featuring some of the UK species, and of course you must check out the Dipterists Forum for all of their information.

 

naturespot.jpg

Figure 11. Nature spot.

 

But what we really want now is information coming the other way. Personal observations in the field, the location of eggs and the like, and species distributions are all critical in ensuring that we maintain and enhance our existing populations.

 

Martin Harvey @kitenet runs the UK recording scheme for these wonderful little animals (See Fig. 12 or visit the website) and you can send all your records to that site. Martin also runs many courses on these as do others in the Dipterists Forum, so sign up and go along to them.

 

screenshot.jpg

Figure 12. The Soldierfly and allies recording scheme, which includes the robberflies.


So there you go - robberflies are amazing, and they do need celebrating. And if you still need convincing here is a little fluffy one to tug at your heartstrings. When asked what is my favourite fly, Laphria flava is at the center of my heart (Fig. 13).

 

Laphria-flava-male.jpg

Figure 13. Laphria flava male.

Apr 23, 2015 Introducing Chloe Rose | Identification Trainers for the Future

In the final post in our series of blogs introducing our new trainees on the Identification Trainers for the Future project we meet Chloe Rose:

 

My name is Chloe Rose, I am 30 years old and have spent the last 10 years enjoying living by the sea in Brighton. After graduating in an Ecology and Biogeography degree I spent a year out travelling in South East Asia and New Zealand, marvelling at the wonderful flora and fauna.

 

Upon my return I began working for the RSPB at the South East regional office as a PA/marketing adminstrator and worked within the wildlife enquiry team. I jumped at the chance of many project opportunities throughout my 2.5 years there, such as project managing the Big Garden Bird Watch, and volunteering where I could at reserve events such as the Big Wild Sleep Out. During my time there I had the pleasure of working with a highly dedicated and passionate team who were devoted to saving nature.

 

Chloe Rose.jpg

ID Trainer for the Future Chloe Rose, whose background is in ecology and biogeography.

 

I have spent the last 8 years studying UK biodiversity, during which time I have volunteered for numerous conservation organisations, assisted in countless biological recordings and, along the way, have developed my identification and surveying technqiues. Some of the more recent work I have been involved in includes: wetland bird counts, corn bunting and nightjar surveying for the Sussex Ornithological Trust, bee walks for the Bumblebee Conservation Trust, great crested newt surveys for Ecological Consultancy, and barbastelle bat monitoring as part of the National Bat Monitoring Programme.

 

20150423 Barbastelle bat NaturalHistoryMuseum_PictureLibrary_036107_IA.jpgA 1905 drawing 'from a dead bat' of a barbastelle (Barbastella barbastellus) in the Museum's Picture Library.

 

When I saw the Identification Trainers for the Future project opportunity with the Museum, I knew that I had to give it my everything. I have found it extremely difficult to come across work since completing my degree, with huge competition and so few jobs it can be easy to become disilluisioned.

 

The training the Museum was offering would provide me with the perfect stepping stone into a career in UK biodiversity, giving me the skills and confidence needed. Whilst preparing for the assessment day, which involved displaying our own projects and revising for the somewhat ominous 'UK wildlife ID test', it re-confirmed my desire to work within this sector and reignited my passion for learning and developing my career.

 

At the end of the traineeship I want to be able to apply the skills gained into bridging the gap in species identification. So I will be trying to find in particular the more priority organisms - the ones vulnerable and which require most attention. I think it's clear to see that I am passionate about our natural world, but I also take great pleasure from passing my knowledge onto others.

 

I look forward to working with the Museum's Learning and Engagement team during phase 4 of the traineeship. During this time I hope to be supported in becoming better equipped in inspiring others about UK biodiversity, especially those who have lost connection with the natural world.

 

There were so many knowledgeable and zealous individuals on the day, I feel extremely lucky to be here, it really is a dream come true. I wish all the other candidates the best of luck with their future endeavours.

 

Thank you Chloe! So there you have it, you have now met all 5 of our trainees in this year's cohort. You will be hearing more from them as their traineeship advances because they will be telling you all about their progress, but for now if you would like to find out more about the traineeships, or the Identification Trainers for the Future project, visit www.nhm.ac.uk/idtrainers.

Museum Science on Twitter

Actions

Notifications