Skip navigation

Citizen science blog

8 Posts tagged with the citizen_scientists tag

Citizen Science Project Manager Lucy Robinson introduces a Q&A with Dr. Anne Jungblut.


In an earlier blog post, a group of students from Bedford Girls’ School described their recent visit to the Museum. The girls had taken part in The Microverse, collecting samples of microorganisms from buildings and sending them to the Museum for DNA analysis, and were keen to meet the scientists involved to find out more. We arranged for them to meet the lead researcher on the project, Dr. Anne Jungblut, to ask her some questions about the project and her wider research. We thought you might like to hear her responses:


Q. What inspired you to set up this project?


A. Of all the life on Earth, only a relatively small proportion are the plants, animals and fungi that we can see – the vast majority are microscopic. My research takes me all over the world, where I collect samples of microorganisms and study them using DNA technologies to better understand these important organisms. I’ve done a lot of work in the Antarctic, but I thought to myself that it would be really cool to also look at the microorganisms in the UK, in particular on buildings. There’s been very little research into the microorganisms that live on buildings in towns and cities to see what role they are playing in urban ecosystems. So I contacted Lucy and Jade in the Museum’s citizen science team as this research would require lots of samples to be collected across the country and I thought citizen science – collaborating with members of the public – could be a good option. Together we developed The Microverse project.




Q. What are you looking for in the data – what kind of patterns?


A. Firstly, I’m looking for the overall diversity of microorganisms. They are such an understudied group that these data will give us a baseline understanding of microorganism diversity on buildings. I’m also looking for differences between building materials – we asked participants to sample three different building materials so we will have a lot of different materials to compare.


We also asked you to record a number of different variables that might affect diversity for example the distance to the nearest road and the nearest vegetation. These variables show us possible pollution levels, or semi-natural habitats that microorganism may have colonised the wall from. I’m interested to see what influence the proximity to roads and vegetation/soil has on the microbial diversity.


I’m also keen to see whether unique locations have different communities of microorganisms. Some sample sites are quite unusual e.g. on land contaminated by heavy metals, and on a pier over the sea. Will these buildings have very different communities of microorganisms to the other samples?


This research will also allow us to formulate more detailed hypotheses and refine our research questions. We are also inviting participants to suggest new hypotheses and future directions for the research. Ideas can be emailed to



Arachnula impatiens, a microorganism found on walls, is a predatory protozoan


Q. How will the Museum judge how accurate the data are?


A. The schools and community groups taking part in The Microverse are carrying out exactly the same method to collect samples as a professional Research Assistant would have done. This means that samples need to be collected under sterile conditions, following a strict protocol.

When we were developing the project, we chose A-level students (or equivalent) as the main audience as they’re committed to science, and we felt they would be more likely to carry out the survey correctly and understand the importance of sterile working compared to other potential audiences we considered e.g. primary school students. Collecting samples in the right way is the first step to ensuring data accuracy.


Once we receive the samples, there are a number of ways we can check the accuracy of the data. After the PCR step, gel electrophoresis checks whether enough genetic material is present in the sample. The sequencing process also removes low quality sequences (ones that are too short in length) which will not give reliable results. The great thing about using DNA technologies for identification is that it’s very accurate and doesn’t rely upon human ability to make a correct identification.


Participants record details about their building surface, but we also ask them to send us photographs, so we can double check if we are unsure about the accuracy of a piece of information, or if it’s an unusual building surface that we need to be able to see to properly interpret the results.

Finally, when we sequence the data, the output shows us how many mitochondria sequences were generated which indicates how much animal DNA there was in the sample. If a sample had been contaminated e.g. by someone’s hands touching the swab, it would show up as a very high number of mitochondria and we would be able to exclude that sample from our analyses. Luckily this hasn’t yet happened.



Students from Trinity Catholic School collecting samples for The Microverse project


Q. Have you seen any microbes in The Microverse samples that you haven’t seen before?


A. Not yet. Samples are still coming in and are being sequenced so we only have very early results from a few sample sites. I will know more when all the samples have been sequenced and analysed. The sequencing we are doing is not always able to identify a microorganism to species level, it may be identified to a Genus or Family. Where they are identified to species level, it takes time to work through the data and explore further any sequences that look particularly interesting. We are keeping The Microverse samples frozen in our Molecular Collections Facility so that we, and other researchers, can go back to them in years to come to conduct further research.


Kev in MCF.jpg

Kevin Hopkins, in our film The Microverse in the Lab, placing specimens in the Molecular Collections Facility


Q. What are the long-term impacts of your research?


A. I work in the polar regions where environmental change is happening at a very fast pace. The deep ice sheets in this area also hold a record of microbial life going back hundreds of years. Understanding the impacts of climate change on all life, not just microorganisms, is an extremely important area of research at the moment. Polar regions are very delicate habitats that have been changed by the introduction of non-native species e.g. reindeer in South Georgia which have had a massive impact on soil quality there. Understanding the microbial life within healthy soils can help us to restore these damaged habitats.


In the UK, microorganisms are largely beneficial, through cycling nutrients such as oxygen, carbon dioxide, nitrogen and sulphur. But they may also be affecting the colour, moisture levels and other characteristics of buildings – understanding these potentially negative impacts may help the conservation of historic buildings and monuments.


In a much longer-term view, it is likely that new active chemicals and medicinal drugs will be derived from microorganisms, so research into microbial diversity facilitates this.



Dr. Anne Jungblut collecting samples in Antarctica


Q. You described The Microverse as ‘citizen science’ – what do you mean by that?


A. Citizen science is the involvement of volunteers in scientific projects that contribute to expanding our knowledge of the natural world, through the systematic collection, analysis or interpretation of environmental observations. Many of the big research questions of our time require large datasets to be collected over large geographic areas. It just isn’t possible for professional scientists to travel the country gathering samples or observations, so we collaborate with members of the public who volunteer their time, effort and expertise.


The Museum has a range of different citizen science projects where you can help our researchers to better understand the natural world. We have a project photographing orchids for climate change research, one recording seaweed distributions around the UK coast to monitor the spread of invasive species, and online projects where you can copy information from handwritten labels on museum specimens to make these data available to our researchers and curators. If you want to see how you can get involved, have a look at the Take Part section of the Museum’s website.



Professional and Citizen Scientists collecting data at Looe Bioblitz, 2013


Lucy Robinson


Lucy Robinson is Citizen Science Programme Manager in the Angela Marmont Centre for UK Biodiversity. She has been working at the Museum in the field of citizen science for 7 years, initially on the Big Lottery Funded OPAL project and has worked on projects studying earthworms, lichens, seaweeds, urban invertebrates, microorganisms and many other areas of biodiversity.  Lucy has a BSc in Zoology from the University of Bristol and a MSc in Biodiversity and Conservation from the University of Leeds.


This week we get an update on the Orchid Observers project, from Project Officer Kath Castillo.


It’s been a busy time for Orchid Observers! The project got off to a great start when the website went live on the Zooniverse platform on 23 April; the very first of the season’s field records was uploaded on day one!


Orchid Observers Team.JPG

The Orchid Observers team, from left to right: Jade Lauren Cawthray, Jim O’Donnell (Zooniverse web developer) Lucy Robinson, Mark Spencer, John Tweddle, Kath Castillo, Chris Raper and Fred Rumsey


At the time of writing this blog we now have 567 registered users on the website who have enthusiastically completed 11,044 classifications, by verifying and transcribing data for our historical specimens and identifying species and flowering stages for around 700 photographic records already submitted by participants. The field records collected span the country, from Cornwall to Perth in Scotland, and from Pembrokeshire across to Norfolk. So far, for early-purple orchid (Orchis mascula) and green-winged orchid (Anacamptis morio) approximately 9% of the records are from new/unknown sites (as measured by 2 km square/tetrad); this is valuable information, particularly for green-winged orchid which is considered at risk of extinction in the UK.


Anacamptis morio - herbarium.jpg

A herbarium sheet of green-winged orchid (Anacamptis morio); one of around 10,000 historical specimens available online for data verification or transcription


Whilst we have not been able to fully compare the Orchid Observers phenology data with our museum records (as yet, the relevant, verified, 2015 UK weather data has not been released) we have already been able to see that the median date of this year’s flowering of two species (early-purple and green-winged) is at least 10 days earlier than the museum data (which mainly covers 1830 to 1970). These are early figures only, and the full data set will be analysed later this year.


We are immensely grateful for the time and good will of all our participants - without this effort we would not have been able to collect this data. And we’ve still got the rest of the summer to collect more data for all our 29 species in the survey!


The Orchid Observers team had a very busy in May, showcasing the project to the public at the Lyme Regis Fossil Festival, in Dorset and on Fascination of Plants Day and at Big Nature Day at the Natural History Museum.


Orchid Observers at BND.jpg

Orchid Observers at Big Nature Day


Some of us in the team have also managed to get out to various sites to record and photograph orchids ourselves. Here’s a snapshot of our recent activities:


Visit to Stonebarrow Hill, Dorset, 1 May


After a busy day on the stand at the Lyme Regis Fossil Festival, Kath, Mike and Chris drove up to the National Trust’s reserve at Stonebarrow Hill to look for orchids and found two beautiful ancient hay meadows of flowering green-winged orchids (Anacamptis morio), including the occasional white variety in a sea of purples.


Kath photographing A. morio near Lyme. MW.jpg

Kath photographing green-winged orchids (Anacamptis morio) at Stonebarrow Hill, near Lyme


Green-winged Orchid_Dorset_01_05_2015_ Kath Castillo (3).JPGGreen-winged Orchid_Dorset_01_05_2015_ Kath Castillo (6).JPG

Green-winged orchids (Anacamptis morio) at Stonebarrow Hill


BBC News report at Darland Banks, Kent, 19 May


Next up, Mark and Kath travelled down to Darland Banks, in Kent, to film a piece for BBC South East News, with reporter Charlie Rose. The south-facing chalk grassland slopes were abundant with the man orchid (Orchis anthropophora). You can see the film piece here.


Man Orchid_Darland_19_05_15KCastillo.JPG

Orchid Observers in the News: The man orchid (Orchis anthropophora) at Darland Banks


Visit to Box Hill in Surrey, 29 May


At the end of May, and despite a weather warning to expect heavy rain later in the day, a group of us left Victoria station in the morning sun and headed down to Box Hill to search for and photograph orchids. Box Hill forms part of the North Downs and is a well-known site to spot many of our wild orchids – there are around 17 species here. We were able to find and photograph 5 of our 29 target species: common spotted-orchid (Dactylorhiza fuchsii), common twayblade (Neottia ovata), bird’s-nest orchid (Neottia nidus-avis), white helleborine (Cephalanthera damasonium) and fly orchid (Ophrys insectifera), by the time the skies darkened. Some species, such as the bird's-nest and fly, are hard to find at the best of times, and were particularly difficult to photograph in a thunderstorm!


Photographing Common spotted orchids at Box Hill.JPG

Lucy, Jade and Mike collecting photographic records for common spotted-orchid (Dactylorhiza fuchsii)


Birds-nest at Box Hill.JPG

The beautiful bird's-nest orchid, (Neottia nidus-avis) in woodland


orchid observers at Box Hill.JPG

Drenched but happy: orchid observers Jade, Sally and Lucy at Box Hill


We’ve also been busy filming a piece which has just launched on the Museum’s citizen science Orchid Observers webpage. Kath organised with the Museum’s Broadcast Unit team to film a short piece to explain the research behind the project. So, mid-May saw Kath, together with Emma Davis and Hannah Wise, setting off early one morning with two carloads of film equipment, a group of Museum volunteers and Mark Spencer. The team went to Oxfordshire, to a couple of the Berkshire, Buckinghamshire and Oxfordshire Wildlife Trust’s finest nature reserves. We are very grateful to BBOWT’s Giles Alder and Laura Parker for hosting us.


Find out about why the Orchid Observers research is so important by watching our film here.


Filming for Orchid Observers.JPG

Filming for Orchid Observers in Oxfordshire


Kath Castillo


Kath is a biologist and botanist working as the Orchid Observers project officer and along with the Zooniverse web team developed the Orchid Observers website. She now tries to get out into the field whenever she can to find and photograph wild orchids!


This week we hear from volunteer Stephen Chandler, who has been supporting The Microverse project by using computer software to identify the taxonomic groupings of the DNA sequences revealed in the sequencing machine.


Due to the size of microorganisms, we have until recent years relied on microscopes to identify different species. The advancement of scientific technologies however has made it possible for scientists to extract DNA from microorganisms, amplify that DNA into large quantities and then put the samples into a sequencing machine to reveal the genetic sequences. In The Microverse project, my role begins when the sequencer has finished processing the samples.


A raw data file from the MiSeq machine.


When the gene sequencer has finished decoding the PCR products it creates a file much like a typical excel file. The main difference is that this file can be incredibly large as it contains millions of DNA sequences belonging to hundreds if not thousands of species. This requires a powerful computer to run the analysis to identify what is in the sample.


At the Museum we use a number of servers with huge memory capacities and processing capabilities. To give an idea of the power these machines have compared to an everyday computer; a server at the Museum has at least 1.5TB (Terabytes) of RAM, that’s 300 times more processing power than your average computer, which has 4-6GB (Gigabytes) of RAM.


In order to use this computing power, the server needs to have a program designed to analyse and identify the DNA sequences, using a reference database of DNA for that group of organisms. To do this I use a program called QIIME (Quantative Insights Into Microbial Ecology).



The QIIME terminal, where the computer code is inputed to process the sequences.


The process of turning a raw sequence file listing all the DNA sequences, hot from the gene sequencer, into something that can be used to create graphs is not an easy task, especially when you have hundreds of thousands of sequences, as for the Microverse project.


The first step is to remove low quality sequences that have errors. Then the sequences within a sample are grouped together into Operational Taxonomic Units (OTUs), according to their similarity. Sequences that are at least 97% similar to each other are grouped into one undefined OTU. The OTUs that are found are then compared to a reference database containing hundreds of thousands of specific species, and other taxonomic groupings, to identify which type of organisms they are.



A nearly completed file. All the sequences have been identified, but now need to be put into an order.


Some of the bacteria that we find are common and you can find them living on most surfaces in our home or garden, but others are incredibly rare and have evolved to survive in the most competitive and extreme environments. And all this microscopic life and diversity can all be found living just outside the front door. Although in the Microverse project no sample or result seems to be quite the same, which makes this a very exciting project.


graph example 2.jpg

Three coloumn graphs representing the relative abundance of different microorganisms identified in three different samples.


Stephen Chandler


Stephen Chandler obtained a degree in marine biology at Portsmouth University and then went on to complete his masters at Imperial College London in ecology, conservation, and evolution in 2014. Stephen’s ambition is to study for a PhD and he is particularly interested in studying microorganisms in marine environments.



Stephen taking samples from the pocket roof of St Paul's Cathedral.


And now a brief word from Dr. Anne Jungblut, on careers in genomic science:


More and more research in biology, ecology and medicine is based on DNA and genome sequencing. The research relies on specialist software and programming in order to be able to analyse data sets as big as the Microverse sequence data, with future genomics projects likely to be much much bigger than our current project. 


Along with specialist software the field will also need more and more different types of experts working on DNA projects to tackle future challenges in science, ranging from people interested in going outside to collect field data, molecular biologists that know how to do laboratory work to extract high quality DNA and run sequencing machines, to people that love concentrating on data analysis by applying specialist software, writing programming scripts or even develop new bioinformatics programs.


Anne Jungblut


This week we hear from Freya Bolton and Emily Stearn, students at Bedford Girls' School, about their experience of visiting the Museum to meet with the Angela Marmont Centre for UK Biodiversity team and Dr Anne Jungblut who leads the Microverse project.


On 30 April, we (eleven International Baccalaureate students from Bedford Girls' School) had the opportunity to come and visit the Natural History Museum, having participated in the Museum's exciting project 'The Microverse'. For many of us, despite the fact we'd visited many times previously, we knew this time it was going to be something slightly different, being able to explore the Museum in a new, unique and fascinating light. Having spoken to Jade Cawthray, she kindly agreed to arrange a behind the scenes tour especially for us!



So much to identify so little time. Florin Feneru with a draw of specimens for identification.

Photo credit: Aarti Bhogaita


We were greeted by Lucy Robinson, who explained to us, as we travelled through the Museum, that within there were over 80 million different plant, animal, fossil and mineral specimens. After this, we were introduced to Dr Florin Feneru at the Angela Marmont Centre for UK Biodiversity, who confessed that he would receive specimens sent in from thousands of people each year, from the UK and abroad, in the hope that he could identify what exactly they were.


He explained that the most common specimen query was the "meteorite" (or as he would like to call them "meteo-wrongs") from members of the public who wanted validation for the rocks they believed to have mysteriously entered from outer space. Dr Feneru did however then excitedly show us, an ACTUAL meteorite received earlier this year, letting us hold it. It was extremely heavy for its size - not surprisingly as it was composed of mainly iron.



An actual meterorite, and not a "meteo-wrong!"

Photo credit: Aarti Bhogaita


He then led us into the Cocoon: an eight storey building with 3 metre thick walls, containing just over 22 million specimens. The building was kept at a particular humidity and temperature in order to keep the specimens in good condition. The storey we entered was maintained at 14°C - 16°C and kept at 45 percent relative humidity. We were shown by Dr Feneru a range of butterfly species on the ground floor, and he explained that, before the Cocoon was built, the curators had to use mothballs to prevent infestations with pest insects.


After we'd visited the Cocoon, we were shown to a workshop area, where we met Dr Anne Jungblut, one of the founders of the project we have been participating in. She gave us a brief talk about her other current projects, including an expedition to Antarctica, and we had the opportunity to ask her about The Microverse and what inspired her to create this project. We were informed that one hundred and fifty four schools had taken part, and that Dr Jungblut was looking for a difference in diversity of microscopic life in different urban environments.


Group Photo Aarti Bhogaita.jpg

A group photo with Dr Anne Jungblut.

Photo credit: Aarti Bhogaita


Following this talk, we had two hours remaining to ourselves, before it was time to depart back to sunny Bedford. Instinctively, we headed first to the cafes and shops before exploring the more scientific parts of the Museum. Full stomachs and emptier purses in hand we chose to explore the Marine Biology and Dinosaur galleries (naturally). One of the pupils explained that she hadn't been to the Dinosaur exhibition since she was 5 years old, as a consequence of being absolutely terrified of the animatronic Tyrannosaurus rex (she had many nightmares apparently). She confirmed that he definitely was not as scary as she thought he was at the time - that being said, she is now 17.


Sophie Aarti Bhogaita.JPG

Sophie the Stegosaurus, looking very friendly.

Photo credit: Aarti Bhogaita


Returning back to Bedford with new knowledge of both 'The Microverse' project, marine biology, and dinosaurs, as a whole group we would like to thank the Museum staff members and the teachers at Bedford Girls' School who made this amazing experience possible.


Freya Bolton and Emily Stearn


Thank you to Freya and Emily for writing their blog post and to Bedford Girls' School for coming to visit. It was an absolute pleasure to have them with us!


This week Sally Hyslop, one of the trainees on our Identification Trainers for the Future programme, gives an update on the results of our 9-year-long Bluebell Survey:


The arrival of bluebells each spring is an iconic sight. The floods of nodding colour characterise our ancient woodlands, support a commotion of insect life and make up an important part of Britain's natural heritage. Our native bluebell species is widespread in Britain; in fact half of the world's population is found here. But the introduction of non-native bluebells, planted in our parks and gardens, may be threatening our native species.


Blubells 3.jpg

Bluebells are iconic to our woodlands. Copyright: Mike Waller.


The introduced Spanish bluebell is deceptively similar to our native species, except for a few subtle differences in its features. It is broader in size, its petals flare out a little more, and the pollen is not white, but characteristically blue.


Spanish bluebells can breed freely with our native species, creating a hybrid plant with features from both species. Since the Bluebell Survey started in 2006, citizen scientists have been carefully identifying bluebells across Britain and recording the whereabouts of native, non-native and hybrid forms. This helps us to investigate these changes.


Exploring change in Britain's bluebells is no easy task, but by submitting their records, citizen scientists have created a nationwide picture of our bluebells. Using this data, scientists at the Museum have gained a greater understanding of the threats to our native species.


For example, we now know that, although large populations of native bluebells exist in the countryside, in urban areas hybrid bluebells are increasingly common. Each hybrid bluebell has a mixed genetic make-up, inheriting a blend of features from both its native and non-native parent. The mixed hybrids may cope better with changing environments and could out-compete our native species.


bluebells 1.jpg

A native bluebell with characteristic bell shape and nodding tip. Copyright: Mike Waller.


To better understand the threat of hybrid bluebells, we have been asking citizen scientists to record flowering times for the bluebells they identify. Using this data, scientists will uncover how native, non-native species and their hybrids are responding to climate change.


Due to natural fluctuations in climate, scientists need many years of data to accurately interpret the effect of climate change on flowering time. This is why records from the public continue to be so important! If you have been or want to take part, by collecting this information over several years and for the same plants, you can provide scientists with consistent data to study our bluebells.


The effect of climate change on Britain's biodiversity is likely to be vast, but by collecting data we can start to work with the unpredictable, anticipate the future and direct change. If you'd like to help discover more about Britain's bluebells take part in 2015's Bluebell Survey.


bluebells illustration.jpg

Illustration Copyright: Sally Hyslop.


Thanks Sally! As part of her work as an Identification Trainee at the Museum, Sally has been collating and managing the records that you have been sending in for this year's Bluebell Survey.


And, for another take on the Bluebell Survey, see the latest from the Wildlife Garden blog.


Jade Lauren


Advances in DNA sequencing technology are occurring at an incredible speed and Kevin Hopkins is one of the Museum's Next Generation Sequencing Specialists working with the sequencing technologies used at the Museum to produce relevant data for our Microverse research.


"The challenge is being able to bring together the technology, often developed in biomedical settings, and the samples at the Museum, where limited and often damaged DNA from specimens is the only chance we have of sequencing them. My job involves designing methods that work for our unusual samples, extracting DNA and producing sequencing ready samples from it, and running our MiSeq and NextSeq next generation sequencing platforms."



Kevin Hopkins is a Next Generation Sequencing Specialist at the Museum.


What is DNA sequencing?

DNA sequencing is the process of reading the order of nucleotide bases (adenine, guanine, cytosine and thymine) in a particular strand of DNA. Sequencing can be used for many different applications, such as defining a specific gene or a whole genome. The best way to sequence DNA is in sections; this is because there are a number of challenges to sampling the whole genome of a species in one go.


There is so much data within a genome that it takes an incredibly long time for any sequencing machine to process the information. In the Microverse project we are analysing short strands of DNA. At least 60 samples are loaded into the sequencer at a time and the analysis takes a total of 65 hours. If we were to analyse the whole genome rather than smaller parts, it would take a considerably greater amount of time, but luckily we don't need to do it for The Microverse project.


Another challenge for sequencing can be old DNA that has been degraded into very short sections, in this situation it is difficult to gain enough DNA from all the microorganism in the samples, to study the community composition. To avoid this in The Microverse project, we asked the schools to return the biofilm samples in a DNA preservative to minimise the degradation of the DNA.

Lab work

When Kevin receives the samples from Anne, the lead researcher on the project, he performs two quality control checks before loading them into the DNA sequencer: these are the concentration of the samples and the average DNA strand length. It is important to know both of these factors as they allow us to estimate the number of DNA fragments that are in each sample.



We are using the Illumina MiSeq machine to sequence The Microverse samples.


The equipment that Kevin uses to sequence DNA is an Illumina MiSeq which can sequence up to 75,000 samples per year. Having equipment like this allows scientists at the Museum to carry out research such as looking at plant DNA to reveal the history of their evolution in relation to climate change, and using molecular work to benefit human health by understanding tropical diseases such as leishmaniasis, as well as exploring microbial diversity in soil, lakes and oceans.


During DNA sequencing the DNA double helix comprising two strands of DNA is split to give single stranded DNA. This DNA is then placed into a sequencing machine alongside chemicals that cause the free nucleotides to bind to the single stranded DNA. Within this sequencing cycle when a nucleotide, which is fluorescently charged, successfully binds to its complementary nucleotide in the DNA strand (A with T and vice versa, G with C and vice versa), a fluorescent signal is emitted. The intensity and length of this fluorescent signal determines which nucleotide base is present, and is recorded by the sequencing machine. The sequencer can read millions of strands at the same time.


Why is this important?


DNA sequencing is vitally important because it allows scientists to distinguish one species from another and determine how different organisms are related to each other. In the Microverse project we are using the sequencer to identify the taxonomic groups of the microorganisms in the samples that you have sent to the Museum.


Katy Potts


Katy Potts is one of the trainees on the Identification Trainers for the Future programme, who is based at the Angela Marmont Centre for UK Biodiversity. Alongside her work on the Microverse project she is developing her skills in insect identification, particularly Coleoptera (beetles).


If you are taking part in the Microverse project the deadline for sending us your samples is Fri 29 May.


A new and exciting citizen science project has begun and it's time to get involved with Orchid Observers! This research project, in partnership with Oxford University's Zooniverse platform, aims to examine the flowering times of British orchids in relation to climate change.


In order to achieve this, we are inviting the amateur naturalist and professional botanical community, alongside nature loving citizens from across the country, to help us collect and sort orchid data.


Bog orchid.jpg

The bog orchid (Hammarbya paludosa) is our smallest UK species. It usually grows on mountain peat bogs and can be found from July to August.


We want you to go out in the field and photograph any of 29 selected UK orchid species and upload your images onto our dedicated website, Flowering times from each of your records will then be collated and compared with the extensive Museum herbarium collection, and data from the Botanical Society of Britain & Ireland (BSBI), totalling a 180-year-long time-series of orchid records.


The primary aim is to further our understanding of the impacts of the climate on the UK's flora, using orchids as a model group. The extensive data set that you will be contributing to, will tell us how different species of orchids are responding to changes in temperature and rainfall across the UK.


Mike in field.jpg

Get out in the field and support us in our research on orchid phenology.


Field work: We are asking observers - like you - to record orchids by simply photographing the flower spike and uploading the image to our website, with a location and a date. To aid you with identifying the orchids, we have painstakingly produced a lavish ID guide (PDF) complete with images, descriptions, flowering times, and distribution maps. There's also a short guide (PDF) for how to take the most helpful photographs for the project.


Online work: We have over 10,000 herbarium orchid specimens from around the UK, stretching back over three centuries. In order to calculate any change in flowering times we need you to help us sort through images of our herbarium sheets and transcribe key information such as the species, location and flowering condition. This is one that can be done at home on your PC, or when out and about from a mobile device.


Pyramidal orchid.jpg

The Pyramidal orchid (Anacamptis pyramidalis) adds a splash of colour to the alkaline grasslands of high summer. Keep an eye out for it in June and July.


If you would like to get involved with the project either online, or in the field, then go to visit The orchid season runs from April until the end of September so the first species are starting to flower right now - time to get your camera out!


Mike Waller


Mike Waller is one of the new identification trainees working at the Angela Marmont Cente for UK Biodiversity. His passion lies in botany and ornithology with a particular specialism in European orchids.


Welcome to the Museum's new blog about citizen science! Before we get started, we should probably give you a quick outline of what citizen science actually is... here's a snippet from our official blurb:


'...the involvement of volunteers in scientific projects that contribute to expanding our knowledge of the natural world, through the systematic collection, analysis or interpretation of environmental observations.'



Cubs learning about British natural history from one of the Museum’s experts at a Big Nature Day event in our Wildlife Garden.


And here it is in a little bit more depth... It's at its essence a type of volunteering for the Museum that absolutely anyone can get involved with. Each of our citizen science projects have a specific scientific goal and a flexible approach to participation - you can take part at a time that suits you, at a location of your choice, and either with your friends and family or on your own.


Anyone can take part in our projects and we have and have had a wide variety to suit any interest: our current projects include collecting samples of microorganisms for DNA analysis, reporting stranded whales and dolphins, transcribing hand-written registers that detail the Museum's collections, or recording observations of bluebells, orchids, seaweeds or invertebrates.


You can find out more about how to take part in our projects here and - of course - by following our new blog where we intend to show you what happens behind-the-scenes and what happens next when you have submitted your data to us.


Over the next few posts we'll introduce you to the team and, from that point on, we'll be sharing regular updates and news of exciting developments. We hope you feel inspired to take part and contribute to the Museum's scientific research!



Naturalists sorting and identifying specimens in the field.