Skip navigation
You are here: Home > NaturePlus > Blogs > Tags

Blog Posts

Blog Posts

Items per page
1

Some of the Museum's most important ostracod specimens were re-examined recently using synchrotron technology. The results published in the journal Science showed that these very delicate but exquisitely preserved fossils gave evidence for reproduction using giant sperm back in the Cretaceous period about 100 million years ago.

 

11563_large.jpg

 

A scanning electron microscope of an exceptionally preserved ostracod from Brazil showing details of unusually preserved soft body parts.

 

From images obtained by scanning electron microscope we have known since the 1970s that the Cretaceous ostracod Harbinia micropapillosa was almost identical in body form to modern day examples. Usually ostracods, microscopic crustaceans that inhabit aquatic environments, leave only their calcareous shells in the fossil record. However, these exceptional fossils from Brazil include details of their organic soft body parts not normally fossilised.

 

These specimens were first found by legendary evolutionary biologist Dr Colin Patterson while he was studying the fossil fish from the same rock formation. He passed them to Dr Ray Bate who published them under the name Pattersoncypris. However, some ostracod workers now believe that they should be classified under the name Harbinia which was first described by a Chinese worker in 1959 and therefore takes naming priority.

 

Grenoble 125_blog.jpg

The European Synchrotron Research Facility (ESRF) at Grenoble in France.

 

In 2007 we had a request by Dr Renate Matzke-Karasz (University of Munich) and a group of co-workers to take our specimens to Grenoble in France to have them analysed in the synchrotron beam ID19. A synchrotron is a giant ring where electrons are accelerated to great speeds and then bent into a circular path by magnets. Strong magents are used which cause the electron beam to deviate and at this point a very bright, intense synchrotron x-ray is emitted. Sometimes synchrotrons are referred to as diamond light sources as a result. These very intense synchrotron x-rays are then focussed into a beam which can be used for analysis at a sub micrometer scale ideal for our microfossils.

 

Some types of modern day ostracods are well known for their use of giant sperm in reproduction. Dr Matzke-Karasz and her co-workers were interested to see if our fossil specimens (Robin Smith thesis collection) contained any evidence for giant sperm or the organs responsible for its production and storage. As the curator of the specimens it was my job to transport them safely to Grenoble and to handle them while they were being analysed. I also took part in the analysis which went on all day and all night for two days. Fortunately we did get some sleep as there were four of us. We took it in turns with two of us analysing the fossils and two analysing the comparative modern specimens in 6 hour shifts.

 

Grenoble 063_blog.jpg

 

Positioning the specimen so that it is aligned with the beam. (Don't worry about the scary red lines. The beam was only switched on when we were all safely out of the room!).

 

Grenoble 038_blog.jpg

Dr Radka Symonova (then at Charles University, Czech Republic), Renate, Dr Paul Tafforeau (ESRF) and Dr Robin Smith (Lake Biwa Museum, Japan) examining some early scans in our experimental cabin home for the two days.

 

The specimens were placed in the beam and then rotated 180 degrees while 1500 x-ray cross sections were taken at regular intervals. These x-ray images were then combined together using specially designed software to produce 3-dimensional images (Holotomographic reconstructions). Although we could immediately see evidence for important internal structures while we were analysing the specimens, a lot of work was still required to produce the final results. The slices that make these 3-dimensional images were analysed for internal structures by Renate and her team back in Germany. Artificial colours were painstakingly added to each slice by hand to show these structures more clearly.

 

Grenoble 054_blog.jpg

 

One of the x-ray cross sections of a fossil specimen before it was combined into a 3-dimensional image.

 

The results clearly showed differences between males and females. The males had distinctive tubes in the position where modern day ostracods have  a sperm pump called a Zenker's Organ. The females had inflated sacks in the position where modern day ostracods have sperm receptacles. These are only inflated once they have been impregnated with giant sperm. Our results had shown that this reproductive strategy had been in place more than 100 million years ago.

 

 

Video of a female specimen of Harbinia micropapillosa. The orange sacks are the sperm receptacles.

 

So why is this important? As I showed in the dinosaur exhibition blog item, it is vital to know how organisms reproduce so that you can correctly interpret their fossil record and distribution in modern day environments. Ostracods are often restricted to particular environments and can be useful indicators of changes in climate. This particular ostracod species is common in Cretaceous non-marine sediments offshore Brazil and is therefore of interest to oil exploration companies as a marker for key rock formations.

 

Reproduction with giant sperm is not just restricted to the ostracods as other organisms including fruit flies and some types of frog also use this strategy. The evolutionary significance and history of this type of reproductive strategy is still unclear. What is certain is that specimens in the Museum collections show that this was also happening over 100 million years ago!

 

DSCF1135_blog.jpg

 

Some acrylic palm of the hand sized scale models produced from the 3-D synchrotron scans and used at the "Science Uncovered" event.

 

 

0

Two upcoming events will enable you to see the original specimens and the scale models of the ostracod that showed evidence of sexual reproduction through the use of giant sperm 140 million years ago.

 

At Science Uncovered on 23 September (see flyer below for details), I'll be on the Palaeontology table from 16.00-17.00. And, a few days before, at 14.30 on 19 September I'll also be taking part in the 'Microscopic sex' talk for Nature Live in the Attenborough Studio in the Darwin Centre.

 

I hope to see you at one or the other (or both!).

 

Science Uncovered_E-INVITE.JPG

0

To celebrate the United Nation's Year of Biodiversity last year, the Museum published details of a different species every day on its web site under the title Species of the Day. These records were delivered last week to another web site The Encyclopedia of Life. Each species was chosen and written about by a museum scientist so this week's blog is to point you in the direction of the microfossils which were chosen for their importance in studies on climate change, ocean acidification, north sea oil exploration and the fossil record of sexual reproduction. Follow the links below to find out more about each species and the groups to which they belong.

 

ehux_coccospheres_51005_1.jpg

Emiliania huxleyi

 

Emiliania huxleyi is a coccolithophore which is a unicellular plant that lives in the upper layers of the ocean and forms tiny calcareous coccolith plates like the ones you can see above. These are artificially coloured images from a scanning electron microscope. This very high powered microscope is needed as they are only tens of microns in size and as a result are usually referred to as nannofossils. The ones above are only slightly larger than a thousanth of a millimetre in size. If you were to dip a bucket in the ocean you could find literally tens of thousands of these types of cells. In early summer, E. huxleyi forms enormous blooms across the northwest European shelf that can be seen from space. Coccoliths are susceptible to changes in climate and ocean acidification. This, combined with an excellent fossil record makes them an essential group in the study of recent changes to our oceans and environment.

 

11563_large.jpg

Harbinia micropapillosa

 

Harbinia micropapillosa is an ostracod, a microscopic crustacean with two calcareous shells. Ostracods can be found in virtually any current aquatic environment and very rarely on land in damp habitats near to water. They have an extensive fossil record because their two shells preserve well as fossils but usually the soft body parts decay soon after death. H. micropapillosa is exceptional because the soft body parts have been preserved in a rock formation that is roughly 140 million years ago. Recent analysis using new techniques has shown the reproductive organs of this ancient organism are identical to those of present day ostracods and suggest that they reproduced using giant sperm back in the Cretaceous period. If you can't wait to find our more about this interesting fossil then follow the link above. However, I will be expanding the story of these important specimens in our collections as the subject of a future blog.

 

29316_large.jpg

Nannoceratopsis gracilis

 

Nannoceratopsis gracilis is a dinoflagellate cyst from the Jurassic period about 145-200 million years ago. Dinoflagellates are marine photosynthetic algae that play an important role at the base of the food chain and the carbon cycle. At stages throughout their life cycle they form resistant organic cysts that can be found in the fossil record by dissolving suitable rocks in nasty acids like hydroflouric acid. Nannoceratopsis is one of the earliest forms of dinoflagellate cyst so studies of this genus can tell us a lot about the early evolution of dinoflagellates. The shape is also very distinctive and easily recognisable. N. gracilis can be found in rocks 168-185 million years old and can therefore be used, on its own or in association with other fossils, to accurately date rocks.

15351_large.jpg

Nummulites gizehensis

 

I mentioned Nummulites gizehensis is a member of the Foraminifera in my second blog and showed a picture of the pyramids at Gizeh that are constructed from rocks that contain this species. The genus Nummulites is a member of a group called the "Larger Foraminifera" that build multichambered shells up to 15cm in size despite being a single celled amoeba. The chambers like the ones shown above can only be seen by breaking the shells apart or making specially oriented thin sections of the rocks they are found in. Sometimes symbiotic green algae also lived in the chambers, providing products of photosynthesis to the amoebe while using the shell as protection. N. gizehensis lived during the Middle Eocene epoch about 37-48 million years ago, in shallow marine conditions and can be used as a marker to show the age of rocks that contain them, particularly in the oil region of the Middle East.

 

Finally a big thank you to my former colleagues Jeremy, Susanne and Clive who originally wrote about three of these beautiful microfossil species of the day.