Skip navigation

Science News

3 Posts tagged with the parasitic_worms tag

Life Science Seminar: The unique development of the fox tapeworm Echinococcus multilocularis: a hopeful, but terrible monster


Uriel Koziol, Seccion Bioquimica y Biologia, Universidad de la Republica, Iguá, Uruguay & University of Würzburg, Germany


Wednesday 26 November 11:00,  Sir Neil Chalmers seminar room, Darwin Centre LG16 (below Attenborough studio)



The larva of the fox tapeworm Echinococcus multilocularis causes a zoonotic disease called polycystic hydatidosis that is difficult to treat and almost impossible to cure. The reason why it is so dangerous is directly related to its unique morphology and development, that unlike most tapeworms, involves proliferative, tumour-like growth within the tissues of the host as well as asexual multiplication. In this talk, I will describe the unique development of E. multilocularis and our current efforts to elucidate its genetic underpinnings and evolutionary origins.




More information on attending seminars at



Trichuriasis is a common intestinal worm infection in Africa and in other parts of the World, affecting almost 800 million people.  Trichuris is the nematode worm that causes the condition and is usually transmitted by faecal contamination of soil or food.  Heavier infestation can lead to pain and a range of health impacts that can seriously diminish quality of life and which may contribute to premature death, particularly in children. 

The World Health Organisation describes trichuriasis as one of the Neglected Tropical Diseases - diseases that thrive in conditions of poverty. Unsafe water, lack of access to health services, inadequate housing, malnutrition and poor sanitation all increase vulnerability to infection by this and other diseases such as leprosy, dengue and schistosomiasis.

It is not uncommon for people to suffer from both trichuriasis and from schistosomiasis, another condition caused by a parasite, and these may be treated by the same drugs. Research on the disease leads to better understanding and more effective treatment.

Dr Stefanie Knopp undertook her PhD research on treatment of trichuriasis at the University of Basel in collaboration with Dr David Rollinson and Dr Russell Stothard in the Museum's Department of Zoology, who are specialists in schistosomiasis.  She has recently published important research from her PhD in Clinical Infectious Diseases (a high-profile journal with an impact factor of 8.3) in a paper on on the treatment of trichuriasis in Zanzibar, Tanzania. 

Single doses of the drugs albendazole and mebendazole had in the past shown limited effectiveness in the treatment of trichuriasis. The combination of albendazole with ivermectin was known to improve treatment, but a mebendazole–ivermectin combination had not been previously investigated.

The research showed that addition of ivermectin improves the therapeutic outcomes of both albendazole and mebendazole against Trichuris trichiura, and may be considered for use in soil-transmitted helminth control programs and individual patient management.


Knopp S, Mohammed K A, Speich B, Hattendorf J, Khamis I S, Khamis A N, Stothard, J R, Rollinson D, Marti H and Utzinger, J  (2010) Albendazole and Mebendazole Administered Alone or in Combination with Ivermectin against Trichuris trichiura: A Randomized Controlled Trial.  Clin Infect Dis.  51 (12): 1420-1428. doi:                                                                          10.1086/657310



The NHM has a strong record in scientific research on parasitic worms, particularly evolution and identification, with wide international collaboration.  Parasitic worms can cause serious health effects in humans and other organisms, so scientific understanding is essential for effective control.


The research groups produce many scientific papers every year, but two produced in 2008 have just been recognised as being especially influential in the subject, having been mentioned ("cited") most frequently as being of importance by other scientists in their publications.


Dr Peter Olson (Zoology) recently received recognition for the “Top Cited Article 2008-2010” from Parasitology International for an invited review paper on Hox genes and parasitic flatworms. (Hox genes control part of the sequence of development of animals from egg to adult) The paper reviews the history of work on Hox genes in the phylum Platyhelminthes, introduces new data from the model tapeworm Hymenolepis, and sets the stage for how the study of developmental genes can inform a series of outstanding questions in the evolution of the parasitic forms.


Olson PD. 2008. Hox genes and the parasitic flatworms: New opportunities, challenges and lessons from the free-living. Parasitology International 57, 8-17.


Dr Rod Bray (Scientific Associate Zoology) is similarly an author on the Top Cited Article 2008-2010, this time in the International Journal for Parasitology. The paper presents the accumulated evidence for a major change in the classifiation of the orders of the Class Cestoda (tapeworms).


The old order Pseudophyllidea, which included tetrapod parasites, such as the common human tapeworm Diphyllobothrium latum, and fish parasites, such as the freshwater pest species Bothriocephalus acheilognathi, is separated into two orders. The fish parasites are included in the order Bothriocephalidae and the tetrapod parasites now make up the order Diphyllobothriidea. These groups have long been thought to be distinct - but closely related - and probably monophyletic (arising from one common evolutionary ancestor). 


However, classifications based on molecular data (DNA) from several sources indicate that these groups are polyphyletic (arising from several different evolutionary origins, and therefore not a natural group in evolutionary terms). The conclusion from the molecular results has been backed up by both new and previously reported morphological and biological information. Latest evidence suggests that the Diphyllobothriidea is closest to the unsegmented ‘primitive’ tapeworms, but the Bothriocephalidea is sister to the ‘higher’ tapeworm orders.

Kuchta, R., Scholz, T., Brabec, J. and Bray, R.A. (2008). Suppression of the tapeworm order Pseudophyllidea (Platyhelminthes: Eucestoda) and the proposal of two new orders, Bothriocephalidea and Diphyllobothriidea. International Journal for Parasitology, 38, 49-55. doi:10.1016/j.ijpara.2007.08.005.