Skip navigation
Previous Next

Science News

January 2015
0

Adrian GloverDeep-Sea Systematics and Ecology Group, Department of Life Sciences

Wednesday 28 January 11:00

Sir Neil Chalmers seminar room, Darwin Centre LG16 (below Attenborough studio)


The deep oceans contain a vast and untapped wealth of minerals useful to humans. In geological terms, there is much known with regard the distribution of these minerals at different types of deep-sea environment. The first polymetallic (or manganese) nodules were recovered by the Challenger expedition in 1873, in the deep Atlantic. In the 1960s, the first estimates were made of the total mineral wealth of the oceans, and the first surveys undertaken. In 1978, the first fully integrated mining trials recovered several hundred tonnes of nodules from the central abyssal Pacific at depths of 5500m; in the preceding year, hydrothermal vents were discovered on the Galapagos rift. Since then, an average of 5 hydrothermal vent fields have been discovered every year, and 19 exploration licences for deep-sea minerals in both abyssal nodule and deep-sea vent environments have been issued by the United Naitons International Seabed Authority, 5 of these in 2014 alone. The United Kingdom government is sponsor to 2 exploration licence claims in the central Pacifc covering 267,000 square km, an area larger thant the UK itself.

Despite our accumulated knowledge of the mineral wealth of deep-sea ecosystems, our biological data remains extremely patchy. The central Pacific nodule regions have been well-sampled for nodules, but the majority of species are undescribed and fundamental questions such as the biogeographic distributions of animals unstudied. The diversity and ecological resilience of species to disturbance regimes are largely untested. At hydrothermal vents, critical data such as degrees of endemicity and gene-flow between vent fields is lacking.

The NHM is in a unique position to provide advice to industry and government, as well as academic research, in deep-sea mining from both the geological and environmental point of view. This has potential to be a key area in our Sustainable Futures strategy. In my research group, we have been working with an industrial contractor on the UK-1 deep-sea mining claim in the central Pacific for the last 18 months and are part of an EU FP7 deep-sea mining project. In this talk I will outline some of the history of deep-sea mining, the fundamental science at stake, our role in current projects, the importance of taxonomy, open data and bioinformatics and some of our plans for our forthcoming fieldwork (we sail for a 2-month trip on Feb 12).

 

More information on attending seminars at http://www.nhm.ac.uk/research-curation/news-events/seminars/

0

Large centipedes and larger datasets

 

Dr Greg Edgecombe, Department of Earth Sciences, NHM

 

27th January - 4.00 pm

 

Earth Sciences Seminar Room (Basement, WEB 05, formerly Mineralogy Seminar Room)

                                         

Scolopendromorpha includes the largest and most fiercely predatory centipedes, totalling more than 700 species.  Subjected to phylogenetic analysis since the late 1990s, early studies drew on small sets of external morphological characters, mostly those used in classical taxonomic works.

 

NaturalHistoryMuseum_PictureLibrary_055195_preview.jpg

Scolopendra gigantea

 

In order to bolster the character sample, new anatomical data were worked up by systematically sampling the group’s diversity in order to formulate new characters from understudied structures/organ systems. Simultaneously, targeted sequencing of a few markers for a small (but growing) number of species provided the first molecular estimates of phylogeny.  These have resulted in stable higher-level relationships that predict a single origin of blindness in three lineages that share this trait, and are now backed up by transcriptomic datasets with high gene occupancy. Explicit matrices of morphological characters and fossils coded as terminal taxa remain vital to “total evidence” dating/tip dating of the tree.

 

More information on attending seminars at http://www.nhm.ac.uk/research-curation/news-events/seminars/

0

We introduced our new digital herbarium project in a previous post: with the herbarium of the Royal Botanic Gardens, Kew, we are moving 70,000 plant specimens temporarily to Picturae, a specialist company in the Netherlands, so that the herbarium sheets can be imaged in the most speedy and effective way. 

 

The images will then be sent to Suriname for transcription of the typed and hand-written information on the sheets into electronic form.  The information includes the species identification, the place and date of collection and often the collector, that can link to field notebooks and other resources. The images and data will then be accessible via online databases to scientists and conservation biologists and others for research and better understanding of plant distribution and biogeography.

 

This is what it all looked like as we packed up and got ready to go - not many people see this, so worth showing:

 

NHM_JAJ_DSC_7974.jpgThe NHM herbarium compactors

 

NHM_JAJ_DSC_7971.jpg

and the grey cupboards on the compactors

 

NHM_JAJ_DSC_7981.jpg

Jacek Wajer removing specimens of Dioscoreaceae (yams and related plants)

 

NHM_JAJ_DSC_8012.jpg

And wheeling them away on a trolley

 

NHM_JAJ_DSC_79601.JPG

Steve Cafferty preparing the transport boxes for the specimens

 

NHM_JAJ_DSC_8019.jpg

Jacek putting the specimens into the boxes

 

NHM_JAJ_DSC_8014.jpg

with colleague Jonathan Gregson

 

NHM_JAJ_DSC_8017.jpg

And Jonathan fitting the boxes onto the trolleys on which they will travel to Picturae in the Netherlands

 

 

More blogs to follow as the project progresses!  #DigitalHerbarium #NHM #Kew

 

 

@KewScience @NHM_Science

 


 


0

Kew and the Natural History Museum are working together on large scale digitisation of their plant collections - #digitalherbarium #Kew #NHM

 

 

Trolleys containing green boxes.

 

Packing specimens at Kew. Kew is sending 41,000 specimens.

 

Plants preserved as herbarium specimens provide the evidence of what plants there are, where they grow and when they were collected. They provide the basis for modelling plant distribution over time, act as evidence that ensures plants are named consistently, and are a source of material for analyses of anatomy, disease and disease control, biochemistry and evolutionary relationships. Together, the herbaria at Kew and the Natural History Museum, London, contain more than 12 million specimens and are consulted by many visitors from around the world. Much of the information that these researchers need is stored away in cupboards, and is therefore not discoverable until a scientist visits the institution and looks inside. By providing images and data from these specimens online, anyone interested in plant diversity, for research or just for interest, can discover what our institutions hold and then access the information they need.

 

Recently some large European herbaria such as the Muséum National D’Histoire Naturelle in Paris and Naturalis in The Netherlands have had digital images made of their entire collections in order to make both specimen images and data about each collection available. Kew and the Natural History Museum have been working closely with Picturae, the company involved in the digitisation of the Naturalis herbarium, to develop cooperative workflows to make digital images and capture data from part of the two institutions’ collections.


packing.jpg
Jacek Wajer and Jonathan Gregson selecting specimens for packing at the Natural History Museum

 

We are embarking on the first stage of this adventure starting the last week of January. This first stage is a pilot to refine workflows and to gather information so we can plan larger scale projects in the future. We are focusing our efforts on several groups of economic plants, the genus Solanum (potatoes, tomatoes and aubergines), the St. John’s Worts (Hypericum) and the family Dioscoreaceae (yams). In all, approximately 70,000 specimens will be digitised using Picturae’s ‘digistreet’ methods. A ‘digistreet’ is essentially a purpose-built conveyor belt system that minimises manual handling of fragile herbarium specimens and captures high resolution images of each. After quality control and checking at both Picturae and the respective institutions, detailed information on where and when each plant was collected will be transcribed from the labels on the specimens by a team in Suriname.


Our objectives for this pilot phase are:


  • Image all Kew’s and NHM’s selected pilot herbarium specimens to an agreed common standard
  • Transcribe all the label collection data from these specimens to an agreed standard.
  • Incorporate all of the images and data into the institutions’ specimen catalogues to make them discoverable on-line.
  • Work together to refine accurate costing of mass digitisation using Picturae’s methods and develop joint workflows that will facilitate future work involving more partners across the UK.

 

This important pilot will lay the foundation for future collaborative work, with the eventual goal of providing access to the rich botanical collections held in UK institutions. We will share the results of our pilot with other institutions to help increase access to the wealth of information on global plant diversity held within the UK and to maximise the scientific and conservation impact of data held in plant collections worldwide. We hope that others will want to join in on this adventure!


picturae.jpg

The Picturae conveyor belt imaging system in Amsterdam.

 

 

The pilot began on the 19th of January with material being sent to Picturae in the Netherlands. We will be tweeting and blogging on the progress of the project as the specimens are shipped, imaged and transcribed - follow us on Twitter using the hashtags  #digitalherbarium #Kew #NHM

 

 

Find out more:

Picturae Digistreet

Natural History Museum: Digital Museum

Kew Herbarium

0

Deep Diving, New Species Discovery and the Greatest Library on Earth

 

Special Science Seminar on communicating how biodiversity is the Earth's most valuable asset

 

Richard L. Pyle

Bishop Museum, Honolulu, Hawaii

   

Wednesday 14 January, 4pm Flett Theatre, NHM London

 

Preceded by coffee & tea in Flett Foyer from 3:15pm

    

The number of species on planet Earth that remain unknown to science exceeds (perhaps vastly) the number of species that have so far been discovered, let alone formally documented. Earth's biodiversity, which represents a library of accumulated information shaped by nearly four billion years of evolution, is arguably the most valuable asset on the planet for the long-term survival of humanity. Within the global biodiversity library, we are at this point in human history like toddlers running through the halls of the Library of Congress, largely unaware of the true value of the information that surrounds us. At the current pace of species discovery and documentation, in the context of what appears to be the dawn of the sixth great extinction, we are losing the race to document this enormous wealth of information before it is lost forever. Taxonomists are the librarians, developing new tools to build the card catalog for the Greatest Library on Earth. The tools include new research and means to access and integrate information. What we accomplish within the next twenty years will impact the quality of life for humans over the next twenty thousand years. 

 

Rich Pyle is globally recognised as an ichthyologist exploring extreme deep reef habitats, a bioinformatician and an ICZN Commissioner, a SCUBA re-breather engineer and and a two-time, two-topic TED Speaker. Here’s his TED blurb:

  • Ichthyologist Richard Pyle is a fish nerd. In his quest to discover and document new species of fish, he has also become a trailblazing exploratory diver and a pioneer of database technology.  A pioneer of the dive world, Richard Pyle discovers new biodiversity on the cliffs of coral reefs. He was among the first to use rebreather technology to explore depths between 200 and 500 feet, an area often called the "Twilight Zone." During his dives, he has identified and documented hundreds of new species. Author of scientific, technical and popular articles, his expeditions have also been featured in the IMAX film Coral Reef Adventure, the BBC series Pacific Abyss and many more. In 2005, he received the NOGI Award, the most prestigious distinction of the diving world.
  • Currently, he is continuing his research at the Bernice P. Bishop Museum, outside Honolulu, Hawai'i, and is affiliated with the museum's comprehensive Hawaii Biological Survey. He also serves on the Board of Directors for the Association for Marine Exploration, of which he is a founding member. He continues to explore the sea and spearhead re-breather technology, and is a major contributor to the Encyclopedia of Life.
0

Clay minerals on Mars: updated views on distribution, mineralogy and geologic context

 

Joe Michalski, Earth Sciences Department, NHM

 

Earth Sciences Seminar Room (Basement, WEB 05, the previous Mineralogy Seminar Room)

 

Tuesday 13th January, 1600h

 

While some Martian meteorites contain minor abundances of clays formed on Mars, most of our understanding of the clay mineralogy of Mars comes from orbital infrared remote sensing measurements. The European Space Agency’s Mars Express spacecraft was, in 2004, the first mission to detect clay minerals on Mars. Since that time, both Mars Express and NASA’s Mars Reconnaissance Orbiter have detected >10,000 deposits spanning a range of geologic contexts and mineralogies. These deposits are extremely interesting for many reasons, not the least of which is that they seemingly date to an era not preserved on Earth (>3.7 Ga). 

 

In this talk, Joe will describe an updated perspective on the mineralogy of Martian clays, and their implications for ancient aqueous geological processes on and habitability of Mars.

 

mars.JPG

 

More information on attending seminars at http://www.nhm.ac.uk/research-curation/news-events/seminars/