Skip navigation
0

Conodonts are extinct phosphatic microfossils that 'look like' teeth and are used extensively for dating rocks roughly 500-205 million years old. Ever since they were first described as fish teeth by C. H. Pander in 1856 they have caused arguments over how they should be classified and, nearly 150 years later, continue to do so. Read on to find out if they really are teeth, why they are so difficult to classify, give names to and even decide which way up they should be!

 

 

Conodonts_blog.jpg

Images of platform, blade-like and coniform conodonts from the Museum collection. Note the presence of white matter inside and beneath the denticles of some of the specimens, a feature unique to conodonts.

 

For consistency, I shall refer to these individual phosphatic elements as conodonts and the creature that produced them as the conodont animal. Some consider this incorrect; you wouldn't refer to the 'cat animal' or the 'lion animal' for example. Often the individual specimens are referred to as conodont 'elements'.

 

  • What do they look like?

 

Conodonts are generally between 0.1mm to 2mm long, although some examples from a single deposit in South Africa measure up to 20mm. They take a variety of different forms including complex platforms, blade-like structures, simple cones and elongate bars with denticles (i.e. small teeth or tooth-like structures). Each specimen has a basal cavity and depending on preservation and species, white matter can be seen inside.

 

  • How do you find them?

 

Usually they are found in marine rocks (limestones or shales) and are released by dissolving them in acetic acid (the acid constituent of vinegar); a process that can take many weeks and sometimes months. The resulting residues are sieved and concentrated into a heavy fraction containing the conodonts by using a heavy liquid such as sodium polytungstate. The majority of collections consist of disarticulated remains and this is the main issue facing scientists studying their distribution.

 

pdt14622_Paul_Taylor_conodonts_Gotland_blog.jpg

A scanning electron microscope image of conodonts from the Silurian of Gotland, Sweden (photograph Dr Paul Taylor, NHM). Although many different shapes can be seen here, the specimens illustrated probably belong to only two species.

 

  • What is a species?

 

Early conodont workers described each shape encountered under a different species name as nothing was known about the animal that produced them, or even if it was an animal. Despite the later discovery of bedding plane assemblages of individual conodonts arranged in biological position, many workers continued to give separate names to each form.

 

In the latter stages of the 20th Century, arguments raged over whether to use multielement taxonomy, where different shaped but biologically related elements were grouped together under one species name. Some scientists preferred to continue to name each element separately and as a result, older published literature can be confusing.

 

Idiognathodus_composite_blog.jpg

 

 

A bedding plane assemblage of Idiognathodus from the Carboniferous of Bailey Falls, Illinois, USA. Fused clusters of conodonts and bedding plane assemblages like these are preserved in the fossil record only in exceptional circumstances. They give direct evidence of the biological grouping and positioning of the various elements in the conodont animal. Left: an SEM image. Right: the same specimen photographed under a light microscope. The black scale bar in the middle is about 0.5mm.

 

  • Are they teeth?

 

Although conodonts look like teeth, it has also been suggested that they could have functioned as sieve structures to filter fine particles. One of my favourite early interpretations of the conodont animal was published by Maurits Lindstrom in 1974. You can imagine these elongate conodonts with upper denticulated surfaces acting very much like a filter if arranged like this.

 

loo_roll_conodont_blog.jpg

 

An interpretation of the conodont animal as published by Lindstrom in 1974. I like to call this the 'loo roll' reconstruction!

 

Polygonal patterns on the upper surfaces of some conodonts show the impressions of cells and suggest that - at least at some stage - parts of some conodonts were fully enclosed in soft tissue. Wear patterns on the surfaces of conodonts and growth studies based on bedding plane assemblages suggest that for some conodonts, the elongate denticulated conodonts were used in a rasping action to capture food and pass it backwards to more blade and platform shaped cutting and grinding teeth. However, this is not universally accepted with some scientists suggesting that conodonts could not have functioned in a cutting action. 

 

Conodonts_polygonal_microsculpture.jpg

Polygonal microsculpture representing the impressions of cells on the platform surface of the Devonian conodont Ancyrodella.

 

  • What produced them?

 

The conodont animal was discovered by chance in a Scottish museum in the early 1980s by some scientists looking for shrimp fossils in the Carboniferous Granton Shrimp Bed. This story is often quoted by curators trying to justify the upkeep of large collections as it is an excellent example of a major discovery resulting from an old uncatalogued collection. The discovery ended one of the longest running sagas in palaeontology; what produced the conodonts?

 

IMG_2817_conodont_animal_blog.jpgThis is one of 10 specimens from the Granton Shrimp Bed of Edinburgh where details of the body of the conodont animal are preserved. The Museum purchased this specimen in the 1980s at around the time that the first paper on the conodont animal was published. The scale bar shows millimetres so the preserved part of the body is just over 1.5cm long.


Details from the 10 specimens available were amalgamated to produce a reconstruction of the conodont animal showing that it had an elongate body with chevron shaped muscle blocks, a caudal fin, a notochord running along its body and paired eyes. There are now other examples of soft body preservation of conodont animals including the giant conodont Promissum pulchrum from the Ordovician of South Africa. This has a very similar body plan to the Granton animals.

 

  • How should they be classified?

 

Although many early conodont workers were only interested in studying the stratigraphical distribution of conodonts for biostratigraphy (relative dating of rocks on the basis of their biological content), between 1876 and 1975 there were 46 different conodont affinities published. Some concluded that they were related to worms, snails, arthropods, chordates and even plants. Others considered them so different from anything else that they should represent a separate phylum, the Conodonta.

 

The precise interpretation of the preserved soft tissues of the conodont animal and histological sections through conodont hard tissues continues to divide the scientific community. Interpretations of conodont hard tissues as representing enamel, cellular bone and globular calcified cartilage have led many to classify them as early vertebrates placing them as more derived than the living lampreys and hagfish and precursors to the early fishes.

 

Not all scientists accept this because some vertebrate workers consider the tissues, particularly the conodont white matter, to be unique to conodonts and unrelated to the dentine and bone present in early fishes. This, allied to differing interpretations of the conodont soft tissues has led to suggestions that they are Chordates but unrelated to the Vertebrates.

 

 

Animal_App_lines_ed_Purnell_blog.jpg

The conodont feeding apparatus and its position within the conodont animal (boxed area) based on Idiognathodus and Clydagnathus respectively. Image courtesy and copyright of Prof. Mark Purnell, University of Leicester. See the text for an explanation of the labels.

 

  • What way up should conodonts be?

 

Before the discovery of the conodont animal and detailed studies of bedding plane assemblages, the exact biological positioning of conodonts within the mouth part of the conodont animal was conjectural. Various conventions used to describe anterior/posterior, upper/lower and inner/outer have subsequently proven to be incorrect. For example, in old terminology the 'anterior blade' of the P1 element is shown above to be a ventral blade.

 

P (Primo) elements were considered to be at the front of the mouth and S (Secundo) elements further back. Discovery of the conodont animal has shown that the reverse is true. Element terminology using the terms P, S and M is ingrained in the literature and will never be changed. However, many continue to use outdated terminology to describe anterior/posterior, upper/lower and inner/outer or use similarity of shape to infer similarity of biological positioning within the conodont animal.

 

  • Summary

 

I have given a very simplistic guide to conodonts here, showing some of the reasons why there have been and still are so many arguments over naming them, working out their function, classifying them and even orientating them. This post is not intended to champion the research of any particular academic or to give strong views on any of the arguments mentioned but if you are interested to receive further details of scientific literature discussing these issues then why not comment below or contact me directly.

0

The end of March and start of April at the Museum marks the end of our reporting year so I thought I'd report on the news from the micropalaeontology collections over the past year. This includes details of national press coverage, exhibitions, loans, acquisitions, disposals, visitors, university teaching, projects by artists and answers to big questions about past climates.

 

Treasures_poster_Blaschka_blog.jpg

Our most iconic specimen as advertising for the Treasures Gallery as 'hair to a Neanderthal with Darwin's beard'!

 

Exhibitions

 

Microfossils are not the easiest display subjects. However, this year has seen several microfossil themed displays, both in the Museum and galleries elsewhere, that feature or have been inspired by our collections.

 

The highlight of the year has to be the display of one of our Blaschka glass models of radiolarians in the new Treasures Exhibition in the main hall of the Museum. The radiolarian scale model, multiplied by about 500 times, was a centrepiece of the display and featured heavily in the advertising for the gallery. The gallery has a public voting panel at the end and last time I looked, the Blaschka items were second favourite behind Guy the Gorilla!

 

The radiolarian model received a large amount of press coverage as part of the advertising of the gallery, including an image in the colour supplement of the Financial Times. I am told that a giant image of the model was projected onto the wall behind the Duchess of Cambridge as she opened the exhibition. A Blaschka video also featured on the Museum's YouTube channel including some additional radiolarian models that are yet to be put on display.

 

The year started with the the exhibition at the Gasworks Gallery of Irene Kopelman's images inspired by our collection of Antarctic Ocean radiolarians and ended with Gemma Anderson's exhibition of art at the Ebb and Flow Gallery, inspired partly by the loan of some radiolarian specimens from our collections.

 

Images of coccolithophores from our archives have been on display at the British Museum. Closer to home, Tom, Steve and I used a portable scanning electron microscope to display our microfossil zoo during the Science Uncovered public event in the galleries at the Museum in September.

 

1912_slide_blog.jpg

Microfossil Christmas cards featured in the national media.

 

Other national press coverage

 

Our collections of Foraminifera hit the national press at Christmas when the story behind the microfossil Christmas cards was published by the Independent and a gallery of images from the collection were included on the BBC Focus web site.

 

P1010014_blog.jpg

 

The cabinet of foraminiferal slides loaned to the University of Birmingham for teaching on the Applied and Petroleum Micropalaeontology course.

 

Loans to support micropalaeontology teaching

 

The main loan of the year was to the University of Birmingham who borrowed 730 slides and over 2,500 countable specimens for use in the teaching of the new MSc course in Applied and Petroleum Micropalaeontology. Another loan of 180 slides from the former British Petroleum Collection was sent to support a student project on the same course that will be co-supervised by my colleague Steve Stukins.

 

Other loans have supported undergraduate projects at the University of Manchester and a PhD student at the University of Edinburgh. A total of 500 images of our specimens or surrogate loans have also been sent out this year.

 

IMG_0187_Tom_trolley_blog.jpg

Tom Hill transporting part of the Modern Pollen and Spores collection past the giant sequoia in the main hall.

 

Collection enhancements and disposals

 

In January we transferred over 30,000 slides of modern pollen and spores from the former Botany Department. A good start has been made with rehousing some of the slides that are currently stored in less than adequate conditions. Other major donations have included 5 slide cabinets of Recent Foraminifera donated by Prof Jo Haynes to accompany the former Aberystwyth University Micropalaeontology Collection that arrived in 2000.

 

Space for these new collections was created by donating a large number of duplicate foraminiferal reprints to the Gryzbowski Library in Poland and a large collection of duplicate ostracod reprints to the University of Brasilia in Brazil.

 

Acritarchs.jpg

Some acritarch images taken by Associate Tim Potter that were released on-line database this year.

 

Details of our collections on-line

 

About 8,900 microfossil specimen records were added to the museum on-line database this year and completed the transfer of records from our paper fossil foraminiferal registers. Details of about 90,000 microfossil slides are now available on-line covering most of our type and figured collection of fossil foraminifera.

 

Records from the Richard Dingle Collection of 90,000 ostracods on 2,500 slides were also added to the database this year and a paper detailing the collection published in the Journal of Micropalaeontology. The collection underpins Richard's work on ostracods that has helped illuminate some major questions in evolution, detailed the movements of ancient continents and shown patterns of migration of ostracods across oceans.

 

1,776 microfossil images from our collection have been posted on-line this year. Images of acritarchs from Tim Potter's collection have been added (see above). Images and videos relating to the Duxbury collection of Cretaceous Dinoflagellates are now available with the specimen details on-line.

 

A cabinet of former staff member Dr Ray Bate's correspondence relating to the ostracod collection has been transferred to the Museum archive and details of these documents added to the on-line archive search.

 

Horne_etal_Woodston_b_colour_blog.jpg

Temperature ranges of non marine ostracod species identified by Horton et al. (1992) from a Hoxnian site about 400,000 years old at Woodston, Peterborough. The mutual temperature range for the month of January is calculated and shows slightly lower mean temperatures than the present day (courtesy of Dr David Horne). New records of non-marine ostracod occurrences from our collections have been added to Dr Horne's database this year.

 

Visitors

 

We hosted in excess of 200 scientific visitors again this year and welcomed student groups from the University of Birmingham, Imperial College, King's College and the British Science Academy. Academic visitors from universities continue to make up the majority of our visitor numbers with a visit from a post doctoral student from Turkey a highlight. She used the distribution of ostracod species in our collections to add to a database which helps estimate past climatic conditions.

 

John_Williams1.jpg John Williams with part of the Index of Palaeopalynology.

 

Publications on our collections

 

This is a harder question to answer as we usually rely heavily on our collection users to provide details of their publications that cite or figure our collections. I know of at least three major mongraphs in preparation/press and this year a book proposal submitted by Micropalaeontology staff and associates on the Museum Iraq Petroleum Microfossil Collection was accepted by Wiley Blackwell.

 

A short article on the John Williams Index of Palaeopalynology was also published in the journal Palynology and we continue to welcome palynologists to use the index for their research.

 

Thanks

 

I hope this does not sound like I am soley responsible for carrying out all of these tasks relating to visits, loans, donations, collections moves and exhibitions. It has very much been a team effort with so many collaborators that is would be impossible to list them all here. I would particularly like to thank Museum Scientists Tom Hill, Steve Stukins and our volunteers Daryl, Johanna, Freya, Heather and Stephanie without whose support this extremely successful year for the collections would not have been possible.

 

And finally ...

 

Keep in touch with what we're doing in Micropalaeontology with our @NHM_Micropalaeo Twitter feed that we also launched this year, which is where you'll hear about new positions in the labs and about our recent activities like this podcast from Palaeocast in which I featured.

1

One of the most amazing things about working at the Museum is having access to world class facilities to support my work, whether that be managing the collections or doing research. Members of the Imaging and Analysis Centre have been analysing an important foraminiferal type specimen using the Museum nano-CT scanner. This produces a 3-D rendition of something less than half a millimetre wide and helps with classification of this important species that has potential to date rock formations, show past climates and ocean conditions.

 

NanoCT_scan_blog.jpg

A prescan picture of one of the paratypes of the planktonic foraminifera, Globigerina prasaepis (Blow, 1969).

You can see the top of the mounting pin and the air bubbles in the adhesive I used. The scale bar is 0.1mm.


 

What's a nano-CT scanner?

 

Electrons from a scanning electron microscope (SEM) beam are directed onto a metal target and this causes X-rays to be emitted. Tiny specimens or samples are then placed between the source and an X-ray camera, allowing 2-D projections like the one above to be taken. The diagram below is posted on the Museum web site where further details and specifications of the Museum nano-CT system can be found.

 

gatan-xum-schematic-48309-1.jpg

 

How is the specimen prepared for scanning?

 

The first thing to do is to mount the specimen on the head of a pin. To do this I used an adhesive called Paraloid B72 and a fine paint brush dipped in acetone. The specimen is then coated with a fine 20 nanometre coating of gold under vacuum in a sputter coater.

 

After this the pin needs to be placed precisely on a special holder or sample stage that is rotated through 360 degrees in the x-ray beam. An image is taken for each degree of rotation. The stage needs to be centred so that the specimen stays in the field of view while it rotates. Fortunately I had the expert help of Tomasz Goral to achieve this.

 

P1000855_blog.jpg

Tomasz is placing the specimen mounted on the end of a pin, onto the rotating sample stage.

 

P1000871_blog.jpg

Special software is used to take an image every 45 degrees while the stage rotates 360 degrees under the microscope seen above. This tells us where the centre of rotation of the stage is. The stage is then adjusted so that the specimen is as close as possible to its centre of rotation. With such a small specimen this is harder than you'd imagine but was done expertly by Tomasz.

P1000868_blog.jpg

The rotating stage with adjusting screws and the specimen on the end of a pin.

 

How long does it take?

 

Once the stage with the mounted specimen is placed into the SEM chamber there are still a lot of adjustments to be made. Different metal targets are available and, for our analysis, tungsten was chosen to produce the X-rays. Several test scans are required to make sure that the images produced are high enough quality to make 3-D reconstructions. Each image is produced by amalgamating a number of frames. The optimum number and length of frame needs to be chosen.

 

The final setting Tomasz chose was 20 frames of 12 seconds each for each degree of stage rotation. You can do the maths if you'd like to work out how long it took to take 360 of these images! Usually a scan would be done overnight and sometimes it can take as long as 24 hours.

 

Globigerina_prasaepis_P49616_slice_blog.jpg

One of the slices produced by the Gatan software. You can see all the chambers inside the specimen

as well as the pores through the calcium carbonate wall of the specimen.

 

 

How do you get a 3-D image?

 

The X-ray projections for every one degree of rotation are then analysed using software developed by Gatan, the makers of the XuM camera. These projections were then overlaid to produce slices through the specimen that were further analysed using a programme called Drishti developed by the Vizlab at Australian National University. Dan Sykes of the Imaging and Analysis Centre used Drishti to produce a 3-D image of the foram that can be rotated, sectioned or studied at any angle or in any plane.

 

 

 

Film showing the 3-D rendition of the planktonic foraminifera, Globigerina prasaepis

 

 

Why are the results of interest?

 

Some members of the International Subcomission of Paleogene Stratigraphy are currently putting together an atlas of Oligocene planktonic foraminifera. The Oligocene spans a period roughly 24-33 million years ago. Subcomission member Dr Bridget Wade of the University of Leeds writes,

 

"The analysis of holotypes and original descriptions are key to determining and understanding taxonomic concepts of extinct planktonic foraminifera. Globigerina prasaepis was described by Walter Blow in 1969 from Tanzania. It has been a relatively under-utilised species, and the relationship to other taxa is yet to be fully determined."

 

2-D Scanning electron microscope images of this species show excellent preservation. However, nano-CT images like these allow us to produce a 3-D model and to look inside the specimen and view the arrangements of the chambers. Hopefully this will help to evalute its relationship to other species of planktonic foraminifera and help scientists to accurately identify this species in research samples.

 

Because planktonic foraminifera secrete their shells directly from ocean water, studies of the carbon and oxygen isotopic signatures of fossil specimens can tell us a great deal about the conditions in ancient oceans and about previous climates. The distribution of various fossil and recent species can also tell us about the positions and directions of oceanographic currents.

 

DSCF1135_blog.jpg

Some examples from our collection of scale models of exceptionally preserved ostracods produced from CT scans.

The real specimens are about 1mm long. For details of how the scans were made, see my post on sex in the Cretaceous.

 

The future

 

The Museum is committed to making details of its collections available electronically via the web so they can be used for teaching or in research projects like those mentioned above. The scans produced can also be manipulated using special software to produce various 3-D models and 2-D cross sections. Scale models of these specimens can be printed in acrylic using special 3-D printers (see examples above) and could be made available to interested parties.

 

The raw data set can be made available to anyone interested in studying any species scanned. This method could be particularly useful for studying species of Foraminifera that are usually illustrated and identified in thin section. Making thin sections of microfossils is a dying art so virtual sectioning using this technique has real potential as it is non-destructive and the plane of section can be varied by choice. Previously we had to rely on the skill of the thin section maker to cut the microscopic specimens exactly through the centre.

 

The images I have shown are promising but there are some interference patterns that make the final rendition slightly fuzzy (see the slice above for example). The Museum have recently purchased and installed a new scanning electron microscope to replace the one that helped towards creating these trial CT-scans. It will be interesting to work with Dr Farah Ahmed and the CT scanning team in the Imaging and Analysis Centre to see if the new microscope can produce even better results.

 

I am greatly inspired by the British Geological Survey who are producing 3-D images of their type collections as well as those from other UK museums. It would be great to work with them and do a similar project on microfossil type specimens like the one presented here.

2

It feels strange recommending readers to go to another museum. However, this is a great example of the application of Micropalaeontology to archaeological studies and the use of our nannofossil collection. My colleague Tom Hill has just returned from a meeting on 'Geological applications in Archaeology' so this subject is receiving a lot of interest at the moment.

 

Just before Christmas I had an enquiry from the British Museum asking me to provide a high definition image of a nannofossil for their multimedia gallery guides. The image was taken by my former colleague Jeremy Young as part of research on the Folkton Drums published in the journal Antiquity in 2004 with British Museum staff Andrew Middleton and Janet Ambers.

 

The Folkton Drums

 

These carved stone cylinders known as the Folkton Drums were found associated with a child's burial site at Folkton near Filey northeast Yorkshire. The diameter of the largest is 146mm and they are made of incised stone with a grooved ware pottery design indicating a probable Later Neolithic age of about 2,500-2,000 BC.

 

Folkton_Drums_AN00155870_001_blog.jpgThe Folkton Drums. Image copyright: The Trustees of the British Museum, ref AN155870001, registration number 1893,1228.15.

 

Nannofossils and the museum collection

 

Jeremy Young was asked to analyse a very small amount of material removed from a blemish on the bottom of the smallest item. At the time it was not known if the stone was chalk or magnesian limestone. Chalk contains the remains of tiny calcareous coccolith plates formed by a unicellular plant called a coccolithophore. These are present in the oceans of today and are widely used for studies on recent changes to our oceans and environment.

 

The Museum houses a large collection of fossil and recent coccolith preparations, and images made by Jeremy Young. Because most coccoliths are less than a thousandth of a millimetre in size, it is very difficult to isolate them as individual specimens or to find the same specimen again even using a scanning electron microscope. As a result, images are just as important as the preparations from which the images were made and species are often defined by images alone. We have a collection of tens of thousands of such images.

 

JY188_Folkton_Drums_fig3.jpg

A  false coloured scanning electron microscope image of the fragment of Folkton Drum analysed by Jeremy Young.
The scale bar is 10 microns which is 0.01 mm.

 

What the nannofossils told us?

 

The fragment contained a typical late Cretaceous coccolith assemblage dominated by Watznaueria barnesae, Biscutum constans and Prediscosphaera cretacea. The species Micula staurophora suggests a Coniacean-Masstrichtian age of the Cretaceous (c. 65-85 Mya). The coccolith evidence suggests that the drums were made from deposits of the Upper Chalk rather than Magnesian Limestone.

 

Chalk is available locally and Magnesian Limestone from deposits about 45kms away. However, the results cannot show for certain that the chalk used was derived locally as the outcrop of the Upper Chalk Formation covers a large area of England. A non-destructive method called Raman Spectroscopy used by Janet Ambers at the British Museum also confirmed a chalk rather than Magnesian Limestone composition.

 

Where to see them?

 

The Folkton Drums can been seen in Gallery 51 at the British Museum. The nannofossil image is shown as part of the British Museum multimedia guide available in 11 different languages on request. If you are interested in the subject of 'Geological applications in Archaeology' then further details can be found via the University of Leicester web site.

2

I'm very excited to see that the Museum is running a half term activity called Curious Collectors. As a child I would have loved this as I was an avid collector and had my own rock collection under my bed. Some of my Geology undergraduate colleagues may even remember me at the end of a field trip to Cyprus sitting next to an enormous pile of rocks I had collected and telling me 'you can't possibly take ALL those home on the plane...'

 

My passion for collecting and collections led me to a career as a curator at the Natural History Museum. What path led me to that dream job and more importantly, what do you need to do to become a curator?

 

Cornwall_diary_field_sketch_1975_blog.jpg

My first field sketch aged 7 and my holiday diary recounting a visit to the Lizard, Cornwall to collect some serpentinite. (Yes serpentinite has purples, reds and greens!). I still have the specimen I collected that day with the help of family friend Chris Moat, frequent donor to 'Museum Giles'.

 

First off though, what is a curator? This question is probably worthy of a separate blog post and frequently leads to differences in opinion. 'Curator' can mean different things in different types of museums and in different parts of the world. In North America a museum curator is hired to do research and there my job would probably be labelled 'Collections Manager'.

 

I like the idea that in Australia a curator prepares the pitch for test match cricket but I'm inclined to agree with University College curator Nicholas J Booth who prefers to restrict the use of the term to museums. For the purposes of this blog post I shall say that a curator cares for a collection by enhancing its documentation and storage, maintains access to it by facilitating loans, visits and exhibits and promotes its relevance by engaging with potential users. With that, here's how to become one:

 

  • Take advice on what to study at University

To work as a curator at the Museum you need to have a relevant science degree. My degree choice of Geology was entirely driven by my desire to find out about the specimens in my personal collection. I remember coming to the Museum in the early 1980s to ask my family friend, the late John Thackray, what A-levels I required to study Geology at University and being dismayed at his answer of 'Maths, Physics and Chemistry'. You will notice that I did not study Biology. At the time I did not know that I would be so inspired to take further studies on microfossils and become a Palaeontologist.

 

  • Take a further degree?

There is no right or wrong answer here. When I first came to the Museum I was are rare example of a curator in my department with a PhD. A further degree in a relevant subject certainly helps but is not absolutely neccessary. In some ways, curatorial jobs at the Museum are unusually specialised as our main interactions are with research scientists. For positions in other museums it can be more advantageous to have a broader background because you would usually be expected to responsible a much wider range of collections and focus on different tasks. A masters in Museum Studies is often a requirement in these situations. Having said that, the majority of my curatorial colleagues do not have this qualification.

 

  • Get some work experience

Specialising made my career prospects narrower and my PhD was followed by a lengthy period of job seeking. I was not getting interviews because I had qualifications but no experience. I decided that a spot of volunteering was what was required to boost my CV and get me on the career ladder so I moved from Leicester to London to volunteer at the Museum. It's never too early to start thinking about getting some experience and school work experience students often come to the Museum. Volunteer and work experience opportunities are advertised regularly on the museum web site.

 

  • Be in the right place at the right time

I was lucky to be in the right place at the right time as I volunteered just as a new microfossil collection had been donated that was relevant to my PhD. Shortly afterwards a temporary position became available as Curator of the former BP Microfossil Collection. I held this temporary position for 6 years until I was successful with an application to get a position on the permanent staff. It's the same in almost any profession. Being in the right place at the right time can make a big difference and sometimes you have to be patient before the right opportunity comes up.

 

  • Find out more

If you'd like information about curators and their activities then consider joining the Geological Curators' Group or the Natural Sciences Collections Assocation (NatSCA).  There are many curators like myself blogging and you can also find out more about their daily activities through Facebook or Twitter (follow us on @NHM_Micropalaeo). The Museum web site includes a fossil hunting guide if you feel inspired to go out and do some collecting yourself.

 

  • Start now!

Don't leave it too late to get involved like I did. If you can get to London between 18th-22nd Feb then why not sign up to be a Curious Collector?  If you can't get to London then why not contact your local museum and get involved in similar activities? It's a great way to start gathering that experience needed to help you become a curator.##

0

In January we transferred the Botany Palynology (pollen and spore) Collection to a new location within the micropalaeontology collections. The  collection includes 32,500 glass microscope slides and 155 files of images of pollen and spores from named living plants from worldwide locations. So why should we be interested in moving this collection to the Palaeontology Department?

 

This collection is already being used by Earth Science staff studying the contents of fossil hyena dung, evidence of early human agricultural activity and changes in the landscape over approximately the last 2.5 million years as a result of climate change. The collection also has potential for supporting forensic studies to help solve crime.

IMG_0187_Tom_trolley_blog.jpg

 

Dr Tom Hill taking great pride in wheeling a trolley of pollen and spore slide cabinets past the giant Sequoia in the main hall of the museum. For health and safety reasons we were only able to move the collection before the Museum opened to the public.


 

In one of my first blog posts - what is micropalaeontology? - I mentioned that there is not always a clear distinction between fossil and extant (living) collections and this is very much the case here. This is an important collection for palynologists looking to reconstruct environments over the the Quaternary Period which covers approximately the last 2.5 million years as many of the plant species present today are represented in the Quaternary fossil record.

 

Pollen and spore grains have an outer wall of an extremely resistant material known as sporopollenin so are widespread in both fossil and recent terrestrial and near shore sediments. Most are smaller than 50 microns so relatively small samples can produce thousands of pollen grains of species diagnostic of particular climatic conditions.

 

IMG_0953_Tom_core_blog.jpg

 

Some of Tom's Holocene core from Somerset, showing a lighter estuarine layer between freshwater peats.

 

Dr Tom Hill of the Earth Sciences Department at the Museum is analysing pollen from sediments from Somerset that cover the Holocene Epoch (i.e. the last 11,500 years).  He collected them using a sedimentary corer, which is essentially a larger version of an apple corer that is inserted into the ground to extract deposits preserved beneath our feet. He said, 'by taking sediment samples at regular intervals throughout the sediment sequence, you are able to develop ‘snapshots’ of what the landscape looked like every few hundred years.'

 

DSC_0117_Tom_field_blog.jpg

 

Tom doing fieldwork with a sediment corer in a 'real field' at Shapwick Heath Nature Reserve.

 

The landscape changed in response to climate and human activity: an abundance of tree pollen suggests that woodlands dominated the landscape while shrubs, herbs and grasses infer an open grassland setting. 'Shifts from woodlands to grasslands are often indicators of human activity in the form of deforestation; the earliest cereal pollen found in these deposits is an indicator of the onset of agriculture during the Holocene' according to Tom.


Hordeum_secalinum_BM10490_blog.jpg

 

Hordeum secalinum - barley, BM10490. Cereal crop pollen grains like these are much larger than average (>40 microns), are typically round with a single opening (pore) and indicate periods of cultivation during prehistory. Photo Tom Hill.

 

Artemisia_BM8975_1_blog.jpg

 

Artemisia - mugwort, BM8975_1. This species/genus thrives on bare ground with immature soil and is often found in sediments accumulated during cold periods such as late glacial episodes in the Earth's history. Photo Tom Hill.

 

Mark Lewis of the Ancient Human Occupation of Britain (AHOB) Project has been using the distribution of pollen from sediments and hyena coprolites (fossil dung), to reconstruct Quaternary environments. Coprolite pollen is useful in situations where sedimentary pollen is absent, for example in caves, where evidence of early humans is sometimes found. Pollen grains can occasionally be reworked from older sediments so analysis of coprolites alongside sediments associated with early human finds can be a useful test to see if the pollen has been preserved in situ.

 

Mark worked on pollen assemblages from Happisburgh, where the earliest evidence of human activity in Britain has been uncovered from c.850,000 year old sediments (for details of their publication in Nature see my previous post on what microfossils tell us about the early humans in Britain). These pollen assemblages showed the climatic setting of the finds and led to breakthroughs in the understanding of early human behaviour, adaptation and survival.

 

Both Mark and Tom are actively using this collection for their research by checking identifications of plant species represented by pollen in their samples. Catalogues, including 8 volumes published by the Northwest European Pollen Flora Project, provide 2-dimensional reference images of pollen but there is no substitute for examining museum reference collections like this one under a microscope. 'The collection provides the user the opportunity to look at numerous examples of an individual species present on a single slide, and review that species in multiple orientations' said Mark Lewis.

 

P1010660_Tom_Steve_cabinet_blog.jpg

Micropalaeontologists/palynologists Steve Stukins and Tom Hill examining the Northwest European part of the pollen and spore collection in its new home in the Palaeontology Building of the Earth Science Department.

 

The Northwest European part of this collection is particularly well ordered thanks to Dr Peter Stafford, Palynologist at the Museum until his death in 2009 who was a major contributor to the collection and publication of the Northwest European Pollen Flora volumes. He worked with many palynologists including Mark Lewis and Prof Steve Blackmoor, former Keeper of the Botany Department. As a result it is now possible to locate examples of the pollen and spores of a named Northwest European plant with ease.

 

P1010645_Tom_SEM_blog.jpg

 

Tom in the old Botany tower examining some of the 155 folders of scanning electron microscope images of pollen and spores prior to their transfer to the Palaeontology Building.

 

The remainder of the 32,500 glass slide collection is currently housed in old metal drawers that do not conform to current storage standards and will need to be transferred into a cabinet next to the Northwest European collection. A start has been made by volunteers and students to rehouse the slides in special conservation grade sleeves but there is much work remaining to be done.

 

While I am very glad that this collection has been moved to our department, it would take me the rest of my career to carry out this task alongside the other collections management responsibilities that I have. As a result Tom Hill will shortly be advertising a couple of volunteer opportunities to help re-arrange the remaining part of this important collection.

 

P1010652_closeup_drawer_pollen_blog.jpg

Slides of pollen from cannabis plants housed in special conservation sleeves in the Northwest European Collection.

 

Finding slides from cannabis plants jogged my memory to mention that while we anticipate that Quaternary palynologists will be the main users of the collection, there are applications for this collection beyond Palaeontology. Pollen grains present in mud on shoes or in tyre treads have been used to link suspects to crime scenes. This collection has potential to act as a reference for forensic palynologists as well as those looking to study the Quaternary.

 

Finally a big thank you to Tom Hill, Steve Stukins and Jo Wilbraham for help with transferring this important collection from Life to Earth Sciences and to Mark Lewis for providing details of the history of the collection and his research. The collection is available to - and will hopefully continue to be used by - both Life and Earth Scientists.

2

Last year I posted some images of microfossils sent as Christmas cards by Arthur Earland (1866-1958) to his collaborator Edward Heron-Allen (1861-1943). Following my post I was contacted by Brian Davidson who now owns Arthur Earland's collection. He visited the Museum in October and brought with him some fine examples of Arthur Earland's foraminiferal slides. It is 100 years since the creation of one of the Museum slides and the story of Earland and Heron-Allen, their collaboration and their subsequent falling out has been published in The Independent newspaper and subsequently the BBC Focus web site.

 

1912_slide_blog.jpg

The slide of Foraminifera made by Arthur Earland for Edward Heron-Allen in 1912.

 

How were they made?

 

Each individual specimen was positioned with a fine paint brush and glued down with gum Tragacanth by Arthur Earland. The specimens are Foraminifera; single celled organisms that mainly form shells of calcium carbonate with one or many openings. The sandy looking lettering on the slide is made mainly from tube shaped agglutinating Foraminifera of the genus Rhabdammina that gathers fine sediment from the sea floor to create a shelter for the single celled organism.

 

1912_slide_closeup_blog.jpg

 

Why were they made?

 

Arthur Earland made them as gifts for his collaborators and aquaintances. He collaborated with Edward Heron-Allen for over 25 years, including a publication on the Foraminifera of the 1910-1913 Antarctic expedition of the Terra Nova (also known as Scott's Last Expedition). The specimens were chosen to show the amazing range of morphologies of the Foraminifera. Other slides in the collection show assemblages from particular samples, for example dredgings from the Challenger Expedition.

 

Heron_Allen_Earland.jpg

Portraits of Heron-Allen and Earland now hanging in the Museum's micropalaeontology library, The Heron-Allen Library.

 

Arthur Earland

 

Earland was a high-ranking civil servant who made a career working for the Post Office Savings Bank. Earland and Heron-Allen shared a room at the British Museum (Natural History) where they were able to work on the Foraminifera in an unpaid capacity. Earland's private collection is now owned by Brian Davidson who bought it from Brigadier H. G. Smith who had obtained it from the Estate of F. W. Mills in 1952. Earland must therefore have disposed of his collection well before his death in 1958. Foraminiferal slides made by Earland have been recorded in Ireland and also in Scotland where he went to live after his falling out with Heron-Allen. Brian Davidson has a listing for a 1,500 specimen slide made by Earland that has not been located in any museum collection.

 

Edward Heron-Allen

 

Heron-Allen, a Lawyer by profession, also had an unpaid position at the British Museum (Natural History). He was responsible for gathering much of the early microfossil collection as well as a vast library of foraminiferal books which he donated to the Museum in 1926. They are now housed, along with more recent microfossil library acquisitions, in the 'Heron-Allen Library'. The web site of the Heron-Allen Society lists his interests: violin making, palmistry, Persian texts, Selsey, esoteric fiction and asparagus. A number of publications detailing Heron-Allen's interests are available via the society.

 

Dec1930_Sep1922_blog.jpg

The "Christmas card" slide made in 1930 and a 1922 "Thank you" slide made by Arthur Earland for Edward Heron-Allen. The 1930 slide contains far fewer specimens than some made in the 1920s that fill the whole cavity. This may represent a waning of their relationship by this time.

 

Why did they fall out?

 

In the early 1930s their long collaboration ended suddenly. Anecdotal evidence suggests they visited the Museum to work on different days after this to avoid seeing each other. Historical data and two key pieces of evidence in the Museum archives suggest a number of factors in the deterioration of their personal and professional relationship:

 

  • Poor health

    At the time both Heron-Allen and Earland were in poor health. Heron-Allen was devastated by the tragic death of his youngest daughter Armorel in a car accident in 1930 while Earland had angina and was unhappy at being passed over for the position of controller of the Post Office Savings Bank.

 

  • Authorship on a publication

    Part 2 of the monograph on the Discovery Foraminifera published by Earland in 1933 tells an interesting story. Part 1 had been published jointly by Heron-Allen and Earland but a note in part 2 states "Owing to illness, my colleague Edward Heron-Allen was unable to take as large a share as usual in the preparation of this report. At his own request, and against my wish, his name is omitted from the authorship".

    Heron-Allen's personal copy of the monograph tells a different story. A handwritten note, that subsequently had several layers of paper stuck over it, reads; "I had my name removed from the titles of this paper, when, on my return from Ceylon in 1931 I found that Earland had claimed all my work upon it as his own, and that, not having knowledge of the German language, he had ignored Hans Wiesner's report on the 'Süd-Polar Expedition' in which (in my opinion) most of his new genera and species are described and figured."

 

  • Division of labour

    The Museum archives contain a letter written in Edinburgh in 1943 from Earland to Ovey, who was then curator of Foraminifera at the Museum. It itemises in great detail exactly who did what during their association. It would appear that Earland did most of the slide related work while Heron-Allen did the writing, often using his personal wealth to encourage editors to accept their manuscripts for publication (In the Heron-Allen Library we have the receipts for various bills paid relating to illustrations and publishing).

    What is certain is that Earland's collection does not contain any "Christmas Card Slides" from Heron-Allen. Either they were never made or they were destroyed by Earland. The collection's owner Brian Davidson tells me that any references to Heron-Allen on the slides have also been scored out.

 

  • Jealousy and recognition

    It is clear from the 1943 letter that Earland was jealous of Heron-Allen who had all the connections and the money to pay for publications while Earland felt that he was the one doing the work. He may have had a point as all their papers were by Heron-Allen and Earland with Earland's name never as first author. Heron-Allen had also been elected a Fellow of the Royal Society in recognition of his work on the Foraminfera. 

 

  • A female acquaintance

    The 1943 letter states that everything was fine until "that final woman" came around. Heron-Allen was a very charismatic and popular figure and often had an entourage of young females. It would appear that one of them may have been involved in the rift between the two scientists. The 2012 Annual Meeting of the Heron-Allen Society was entitled "Edward Heron-Allen and some women of his acquaintance"!

 

 

ZF_5318_Recent_Foraminifera_Goldseeker_9B_XMAS_1909_blog.jpg

 

Earland's mounting skill, diligence and Heron-Allen's writing, connections and money was a fruitful combination for 25 years. Many publications and the accumulation of the best foraminiferal collection and library of the time was the result. The Heron-Allen and Earland Collection is the backbone of the current collection, in which the 1912 Christmas Card slide is one of the most treasured items. Happy 100th anniversary of the sending of this microfossil Christmas card and more importantly, Happy Christmas to you all!

2

The new Treasures Cadogan Gallery opened at the Museum this week with an iconic specimen from the micropalaeontology collections displayed prominently in the first case you come to when entering from the left-hand-door. Just over 10 years ago, this beautiful glass model of a radiolarian made in Dresden in 1889 by father and son Leopold and Rudolf Blaschka, was housed in a cardboard box and hidden behind the scenes at the Museum.

 

Treasures Gallery-040-231112_blog.jpg

Picture courtesy of the NHM Picture Library


Radiolarians are single celled organisms (Protozoa) that secrete tiny skeletons of opaline silica or glass so it is appropriate that the Blaschkas should re-create them in glass. They range in size from 0.03mm to 2mm and mainly have a marine solitary floating lifestyle (planktonic), although some are colonial. The model on display is enlarged approximately 1,000 times.

 

For some time it has been a goal to get the Museum collection of Blaschka models on permanent display so walking into the new gallery this week and seeing the Blaschka specimens finally on show was very exciting. It has been a great team effort enhancing the profile of the collection by research, publications, conference presentations, conservation, exhibition loans, CT-scanning, filming and exhibition design. Here are a series of pictures illustrating the journey of a small part of the Museum Blaschka collection from cardboard box to permanent display.

 

Raphidiophrys_elegans_1889_6_11_1-18k_Conservation 006_blog.jpg

 

We hardly dared open the cardboard boxes housing the collection of 18 radiolarians to show them to visitors for fear of breaking the glass models inside. The boxes had "S" written on the side in red to signify that they are salvage specimens to be removed from the Museum first, in the event of a disaster.

 

To me these glass models are real treasures, not only because of the amazing skill and artistry in their fabrication but also because they so beautifully display aspects of microscopic collections that lie hidden behind the scenes at the Museum. The radiolarian represents the only specimen from the micropalaeontology collections currently on display in the Museum galleries. The octopus and jellyfish also on display show colours and structures that are not visible in spirit collection jars and beautifully show the anatomy of each species.

 

Montage_anemone_jellyfish_nudibranch_blog.jpg

 

The Museum holds 185 Blaschka glass models of radiolarians, amoebas, heliozoans (similar to radiolarians), squid, octopuses, cuttlefish, nautiluses, nudibranchs (soft bodied marine molluscs), corals, sea anemones and jellyfishes. The Museum collection was acquired in four stages in 1866, 1876, 1883 and 1889, representing some of the earliest and last marine invertebrates made by the Blaschkas. In 1887 they started making glass flowers for Harvard University and shortly afterwards were employed exclusively by Harvard so ceased making marine invertebrates.

 

Long serving members of staff recall the collection being on display in the corridor outside the current Human Biology Exhibition in the 1970s. The collection was subsequently divided between the Palaeontology and Zoology departments where it was housed in five different locations throughout the Earth and Life Science departments. Zoology curator Miranda Lowe and I first located the specimens and searched the Museum archives and Zoology specimen registers for details.

 

Copy of CNV00023.JPG

This image shows a list made by the Blaschkas in 1883 of the models sent to the British Museum including the octopus model on display in the Treasures Cadogan Gallery. The price (113 Reichsmarks) and relatively small size of the transport box (26 x 22 x 15 inches) are shown.
Image courtesy of the Rakow Reserach Library, Corning Museum of Glass, New York (CMGL Bib 94604.6).

 

Miranda and I made trips to the Blaschka archive in the Rakow Library at the Corning Museum of Glass, New York, to find out more about the history of our collections. These suggest that British Museum staff may have ordered glass taxidermy eyes from the Blaschkas in 1872 and complained when the mollusc models arrived broken in 1883.

 

Eucyrtidium_Haeckel_Plate.jpg
The Corning archive also includes the original drawings from which the Blaschkas worked. They gained their inspiration by direct observation from nature and from illustrations in publications like Henry Gosse's 1860 Actinologia britannica or Ernst Haeckel's 1862 monograph on the Radiolaria (see above). The publication by Haeckel was one of the first to employ evolutionary theory to explain the distribution of organisms so it is appropriate that a copy of Darwin's On the Origin of Species is displayed next to the Blaschka models in the Treasures Cadogan Gallery.

 

Historical_Biology_cover2_blog.jpg

The National Museum of Ireland copy of the radiolarian Aulosphaera elegantissima now appears on each cover of the journal Historical Biology. Reproduced with permission from Nigel Monaghan (National Museum of Ireland) and Taylor and Francis.

 

Blaschka experts met at a conference in Dublin in 2007 made possible by the kind benefaction of George Loudon with the support of the National Museum of Ireland. Miranda and I presented a paper on the Museum Blaschka Collection that was published the following year in the Blaschka conference proceedings.

 


Exhibition_poster.jpg


At the time of the conference the profile of the Museum Blaschka collection had been raised both in and outside the Museum leading to several requests from other museums to display our Blaschka models in temporary exhibitions. Models were lent to the National Glass Centre in Sunderland, Sheffield Museum and displayed in temporary exhibitions at the Museum at Tring (see above) and in The Deep here at South Kensington.

 

Sunderland_Blaschka_DSCF0437_boxes_blog.jpg

 

Transport boxes for Blaschka models at the National Glass Centre, Sunderland. In case you were wondering, they were empty when this picture was taken. We wouldn't dream of stacking them like this if they were full!

 

Special cases were bought so that the models could be transported safely to and from exhibition venues. Bespoke inserts were made from layers of Plastazote™ foam and white Tyvek™ cloth to hold the items firmly in place during transport. These boxes were then transported in lorries usually employed for moving works of art between galleries.

 

Meanwhile, new conservation grade storage boxes for the collection were constructed initially by Felicity Bolton, then of the Museum's Palaeontology Conservation Unit. For her published work on the displayed radiolarian model, Liesa Brierley was awarded the Institute of Conservation’s Nigel Williams Prize for glass and ceramics conservation as well as a prize for the best student dissertation of 2008 at the University of Applied Sciences Erfurt, Germany.

 

She employed a two-stage cleaning process using a modified museum vacuum and a range of soft brushes followed by a mixture of solvents on an antistatic mini swab. She also reattached broken spines with reversible adhesive Paraloid™ B72, remounted some of the fine model strands using nylon micro-tubing and carried out initial CT-scanning of some of the models.

 

CT_model.jpgCT-scan of the gold centre of the displayed radiolarian not seen since the Blaschkas made the model in 1889.

 

Chris Collins and Effie Verventiotou of the Museum Conservation Centre in conjunction with Dr Farah Ahmed in the Museum's Imaging and Analysis Centre employed CT-scanning as well as other detailed analytical techniques to study the condition of the models. This has revealed valuable information about how the models were built, helping conservators to better understand deterioration processes and to tailor their conservation strategies.

 

Effie, who carried out the conservation work on the octopus and jellyfish models, remarked about the octopus, "The results of the study showed the use of animal glue and gum arabic used as coatings, adhesives and paint media. The analysis also demonstrated the use of at least two different types of glass on its construction and revealed an intricate internal structure."

 

IMG_6960_blog.jpg

Helen Walker with Effie Verventiotou and Miranda Lowe at the installation of the Blaschka case of the Treasures Cadogan Gallery.

 

In conjunction with museun mount maker specialist Helen Walker from the Design and Conservation Department, Effie also used these CT-scans to print 3-D mounts for the displayed specimens so that the bases of the radiolarian and octopus specimens could be perfectly supported while on display.

 

Light levels in the gallery are kept to a minimum and the models will be changed every 6 months to avoid light damage. The mounts are attached to granite blocks and the glass cases fixed to the underlying structure of the museum building rather than resting directly on the floorboards of the gallery to minimise the possibility of vibration damage.

 

Treasures_poster_Blaschka_blog.jpg

 

Getting just three of the Museum Blaschka collection items from their cardboard boxes to permanent display has been a major undertaking involving a very large team. I just checked my Blaschka e-mail folder and it includes over 2,500 e-mails sent over 10 years by over 100 different people so apologies that I have failed to mention everyone involved.

 

I must have opened the Blaschka cabinet for visitors, tours and various Museum staff hundreds of times during these 10 years so I am delighted that the Museum chose and supported the work for Blaschka specimens to be part of the new gallery and available for all to see in future. Several on-line resources are available including a Treasures video on the BBC website, details of all Treasures specimens in the gallery a short Blaschka film featuring Miranda, Effie, Farah and myself (the YouTube version is also embedded below). The radiolarian and all the other Treasures in the gallery look amazing on-line but even more spectacular in real life so please visit if you can.

 

 

The Treasures Cadogan Gallery is free and open every day of the year apart from Christmas Day. As you leave, don't forget to vote for the Blaschka models as your favourite on the interactive screen situated to the left of Guy the Gorilla.

3

In July my colleague Tom Hill welcomed a group of Archaeology students from the University of Birmingham to the Museum. On their tour they were shown some microfossil slides collected by retired Museum micropalaeontologist and current Museum Scientific Associate John Whittaker from various important archaeological sites showing evidence of the first humans in Britain. I've picked out three key sites where the microfossils in the collection help with dating the finds and reconstructing the environment and climate of these first human settlements in the British Isles.

 

John is an Associate Member of the Ancient Human Occupation of Britain (AHOB) Project. The project is investigating the timing and nature of human occupation of the British Isles, the technology they used, their behaviour, the environment they lived in and the fauna sharing the landscape. The first site I have chosen was investigated well before the 2001 start of the AHOB Project. 

 

1. Boxgrove about 500,000 years ago

 

Boxgrove_small.jpg

This reconstruction is based on evidence from archaeological excavations at Boxgrove, funded by English Heritage, directed by Dr Mark Roberts of University College, London. (Image by Peter Dunn, English Heritage Graphics Team, copyright English Heritage and reproduced with permission).

 

In 1993 a Homo heidelbergensis shin bone was discovered during archaeological excavations at a sand and gravel quarry at Boxgrove, Sussex. At the time this represented the earliest evidence of human occupation in Britain. Well preserved hand axes and butchered animal bones with flint cut marks as well as two human teeth were also discovered at the site.

 

Ostracods and Foraminifera collected by John Whittaker from Boxgrove indicate a marine raised beach and a later terrestrial deposit with freshwater ponds below chalk cliffs. The microfossils were able to show that the Slindon Sand was deposited in a wholly marine high-energy environment, whereas the Slindon Silt was deposited in a shallow intertidal environment at the margin of a regressive sea (see image above). This sort of information is vital when interpreting the archaeological finds from the site.

 

Boxgrove_freshwater.jpg

 

2. Pakefield about 750,000 years ago

 

It has long been suspected that the Cromer Forest Bed exposed on the coast of East Anglia could contain evidence of human activity. In 2000, coastal erosion revealed river sediments containing flint artefacts. In 2000, these stone tools provided the earliest evidence for people in Europe living to the north of the Alps and the findings were published in the journal Nature in 2005.

 

The oldest artefacts from Pakefield came from the upper levels of estuarine silts where both marine and brackish ostracods and foraminifera have been recovered. Other evidence from mammal, beetle and plant remains suggests a setting on the floodplain of a slow flowing river where marshy areas were common.

 

The river sediments were deposited during a previously unrecognised warm stage (interglacial) and the presence of several warm loving plants and animals suggests that the climate was similar to that in present day southern Europe.

 

The interglacial sediments are overlain by a thick sequence of glacial deposits which include till and outwash sands and gravels. These contain reworked (Cretaceous and Neogene) microfossils transported from the North Sea Basin by glaciers.

 

This is important information as fossils found in these redeposited sediments could be give false indications as to the climatic setting and dating of the any finds.

 

Scordiscia_marinae.jpg

The extinct freshwater ostracod Scordiscia marinae has been found at both Pakefield and Boxgrove and is characteristic of the Middle Pleistocene period.

 

3. Happisburgh about 840,000-950,000 years ago

 

Sibbick-HappisburghReconstruction.jpg

 

Reconstruction of the site at Happisburgh by John Sibbick. (copyright AHOB/John Sibbick)

 

Shortly after the Pakefield discoveries, Mike Chambers was out walking his dog at on the beach at Happisburgh (prounced Haze-boro) and discovered a flint handaxe in sediments recently exposed on the foreshore. This remarkable discovery sparked a major programme of geological and archaeological work at the site that has discovered at least four other Palaeolithic sites at Happisburgh.

 

One of the sites is even older than Pakefield and pushes the timing of the occupation of Britain back by at least 100,000 years. The key geological formation has since been named the Hill House after the local pub!

 

Bytham_Thames.jpg

 

A Palaeogeographic map of Britain the in Early Pleistocene (about showing the land bridge between Europe and the position of the Thames and Bytham rivers. (Courtesy of Simon Parfitt and the AHOB Project).

 

At this time there was a land bridge between Britain and France that would have aided migration of humans from continental Europe. The English Channel was first cut about 450,000 years ago following a major flood from a glacially impounded lake in the position of the present day southern North Sea. The Thames did not follow its current course but flowed further north through Norfolk converging with the ancient river Bytham.

 

The saltmarsh foraminiferal species Jadammina macrescens has been recovered from Happisburgh and is consistent with interpretations that the site is situated near the mouth of the ancient large river, possibly the River Thames.

 

Jadammina_macrescens_SIFig12.JPG

 

The foraminiferal species Jadammina macrescens is common in saltmarsh environments.

 

Pollen and mammal fossils suggest that the climate was similar to that of southern Sweden and Norway of today with extensive conifer forest and grasslands. The floodplains were roamed by herds of mammoth and horses. Foraminifera like the species Ammonia batavus are particularly useful climatic indicators.

 

Ammonia_batavus_Palaeoclimate.jpg

 

The foraminiferal species Ammonia batavus is characteristic of warmer climates.

 

The dating of the deposit is provided by a combination of mammoth, horse, beetle and vole finds as well as the Middle Pleistocene ostracod Scordiscia marinae. Work by John Whittaker and the AHOB team at a number of other Pleistocene sites across the SE of Britain has increased the potential of ostracods as tools for dating these sediments.

 

The microfossil collections from these important archaeological sites deposited here at the Museum are an important example of collections that support the findings of a high-profile project that is regularly in the national news.

0

Over the last month or so we have been preparing a large microfossil teaching collection for loan to the University of Birmingham to support a new postgraduate masters course on Applied and Petroleum Micropalaeontology. The collection consists of 730 slides and over 2,500 countable specimens housed in a single cabinet.

 

Microfossils in the collection represent all the different foraminiferal groups and were compiled by Prof. John Haynes of University of Wales, Aberystwyth where he used the collection to teach an M.Sc. course in Micropalaeontology before his retirement in 1993.

 

Group_of_Foraminifera_A1_19-trans3-10x_blog.jpg

A glass slide with mounted specimens arranged to illustrate the shell structure in various groups of Foraminifera. The crack across the slide was caused, presumably by a student, while focussing the microscope too closely on the slide! In general the collection is in remarkable condition considering the many years of use for teaching.

P1010016_blog.jpg

The loaned teaching collection cabinet represents one of 62 microslide cabinets donated to the Museum by the University of Wales, Aberystwyth in the early 2000s along with associated residues, samples, notes and student theses. The university stipulated that a well curated collection be left before a student could graduate so the entire collection is in beautiful order.

 

Prof. Haynes supervised over 80 M.Sc. dissertations and 30 M.Phil and Ph.D. research students before he retired. The Aberystwyth Collection also contains ostracod collections compiled by Prof. Robin Whatley and his students. A searchable collections level catalogue of the Aberystwyth Microfossil Collection can be found on the Museum website.

 

Lepidocyclina_limestone-A15-8b_1_2x_blog.jpg

A thin section of limestone composed almost entirely of Lepidocyclina, a genus of larger Foraminifera.

 

The University of Birmingham is the only university in the UK currently offering a full M.Sc. course specialising in micropalaeontology. The course started in October 2012 and the teaching in the first month will include classes on Foraminifera taught by Haydon Bailey.

 

Foraminifera and other microfossil groups are very useful for dating rock formations as well as giving details of the environment that they were deposited in. This sort of information is vital in producing models for exploration of petroleum and other natural resources.

 

To prepare the loan we had to compile a list of all specimens, count them if possible, number the slides individually and make notes on the condition of specimens and slides that were in poor condition. A big thank you to Haydon Bailey and Daryl Tappin for help in preparing this vast loan.

 

Below are a few more images of some of the specimens that caught my eye while I was checking the loan. I hope that both you and the University of Birmingham students will enjoy this amazing collection!

 

Alveolina_elliptica-A7_16-section-2-5x_BLOG.jpg

A thin section of Alveolina elliptica. The cracks are in mounting balsam.

Various_foraminifera_Nothe-A9_7-slide2-3_2x_blog.jpg

A slide with an uncountable number of foraminiferal specimens from the Nothe Clay of the Jurassic coast. Roughly 2,500 specimens were counted on the loaned slides. In reality the collection consists of far more than 2,500 specimens as we did not try to count the individual specimens on 200 of the 730 slides because there were too many of them.

Nummulites_britannicus-A16_9-lat-1_2x_blog.jpg

.. and finally Nummulites britannicus.

0

I have just read an excellent blog article by Nick Poole about the Smithsonian Digitisation Fair in Washington. I gave a talk last December about the cost of mass digitisation at the Annual General Meeting of the Geological Curators' Group at Leeds Museum and feel inspired to jot down the thoughts of a curator in the middle of a mass digitisation project. Here are my 10 steps to mass digitisation dealing with some of the pitfalls, how we have managed to overcome them, a timeline and finally an estimate of the cost of this mass digitisation project.

 

  • Data entry templates

I have been asked so many times if I can provide a template for easy data capture. In my experience, each dataset is different and considerable initial thought is required to design a good data capture structure. I was given 100,000 micropalaeontological records back in 2009 that were created using MS Access on a data entry sheet designed to mirror fields in our KE Software collections management system, KE Emu. You can never spend too much time at the start of the process testing how it works so that the data you capture is useable. It could save weeks if not months of re-formatting at a later stage. This is especially critical if you will later rely on someone else to deliver your data to the web.

 

Registers_DSCF1048_blog.jpg

 

The old paper microfossil registers transcribed into an MS Access database at the start of the project

 

  • Getting help with entering data

Two contract data entry clerks were responsible for initial data entry of our old micropalaeontology specimen registers. There has been a lot of debate about whether non-specialists can work as accurately as specialists. I would say that they did an excellent job in transcribing exactly what was written in the registers apart from when the handwriting was poor. I often had trouble interpreting what had been written in these cases! They did it in a fraction of the time it would have taken me. I haven't tried crowdsourcing but I am certainly considering it to help clear some of the electronic backlog registration that has accumulated since we stopped recording everything in pen and ink.

 

  • Cleansing

The data entry clerks were told not to do any interpretation and to transcribe exactly what had been written in the registers. This is fine because we wanted to maintain a good balance between recording the original register data and making informed interpretations. No orginal data has been removed during the migration as we were able to record details in verbatim fields. Considerable cleansing of the data has been neccessary, mainly because the data in our registers is not sufficiently detailed or needs updating to reflect changes in political boundaries. Various other key areas required cleansing and these are dealt with below.

 

  • Maintaining data standards

There are many ways of writing people's names (Miller, C. G., Mr C. G. Miller, Dr C. Giles Miller ... etc) and the hand written registers reflect the fact that there was never a standard followed. Matching records in the MS Access database with those already in KE Emu was therefore difficult to impossible without creating many duplicate entries. To avoid this, we compiled a list of all the names associated with the collection and distilled them down to a list of about 2,000. We then checked these against all current museum records and found that many had already been created by other members of Museum staff. We then linked these records directly back to our data using a internal record number or "irn" so that we could be sure that the correct record in the correct format was being linked to. New records were created if neccessary from the dataset of names we compiled.

 

Registers_citations_blog.jpg

Some relatively complete examples of bibliographic citations

 

  • Breaking tasks down into manageable blocks

In some ways we did this with the process we used for people names. I was interested to see in Nick Poole's blog that the Smithsonian are using similar strategies of breaking the tasks down into smaller blocks to achieve larger digitisation goals. Bibliographic citations like those above, have not been complete enough to create records direct from the registers as many use abbreviations, lack vital data or need further research to make them meaningful. I wrote a short subproject proposal for internal funds to hire an assistant for 6 months who created full reference details for all the published specimens in the collection. In reality this took a much shorter time than expected and she was able to help with many other tasks associated with preparing the data for migration into KE Emu.

 

  • Using pre-existing datasets

Again the registers were not complete enough to be able to create identification records from scratch because generic names were often abbreviated or  the original describing author details were missing. There are many biodiversity resources on the internet including the Ellis and Messina Catalogue of microfossil species published by the Micropalaeontology Press. I asked them if I could use their list of microfossil names to help populate our database and for a small fee they provided an MS Excel file of all the species in their database. I imported about 50,000 complete microfossil names into KE Emu and used a simple VLOOKUP function in MS Excel to match these with electronic records created from the paper registers. When no match was achieved I checked why, corrected the data if neccessary or used the data to create a new species records in KE Emu.

 

  • Thinking positively

Shortly after arriving at the Museum in the 1990s I remember being told by a senior member of staff that it would take us 250 years to database the entire collection. Sometimes it's difficult to get started when you feel that your efforts are only just touching the surface or will go off into some black hole of a database that won't ever be useful because hardly any of your hundreds of thousands of objects are registered in it. I have to admit that there have been some times in my career when I have felt like this. My mentor encouraged me to see the bigger picture and the benefits of the project that I was involved in. Bringing data checking up to the top of my list of collections management priorities has paid immediate dividends.

  

  • The bigger picture

There are so many advantages to having the majority of your collection on an electronic database that is searchable via the web. Even though I am already half way though, I have seen real benefits in answering enquiries quickly and easily. Once everything is migrated I will be spotting areas for development of the collection, looking for potential areas for de-accession while gathering hard data on the collection strengths. It is much easier to raise the profile of the collection and encourage visitors to the collections through schemes such as SYNTHESYS when you can send out messages to list-servers advertising a web link to your collection. Another major advantage is that I now have somewhere to associate the many electronic images and documents that relate to my collections and these are being delivered to the web should I choose to.

 

  • Estimating timescales

The initial data entry from the registers took our two clerks 4 months each to input a total of 100,000 records. In 6 months my assistant created full bibliographic records for the whole dataset and added "irn" references for all of the people associated as either collectors, donors or publishers. The process that has taken longest is my data checking, particularly for the scientific accuracy of the fossil names. I would estimate that I spent between 5 and 10 per cent of my time checking data and preparing import sheets since the project started. I am therefore the log jam! At the current rate we are looking at sometime in 2015 for completion of the entire 100,000 record dataset.

 

DSCF1266_Lyndsey_blog.jpg

Lyndsey Douglas researching full bibliographic microfossil reference details in the Heron-Allen Library

 

  • Costs

Obviously it would be imprudent to show a breakdown of salary costs here so I will just say that at Christmas last year when 36,000 KE Emu records had been created, the cost came to roughly one pound per record. This includes the Micropalaeontology Press fee, salary costs for initial data entry, an assistant for 6 months and for 10 per cent of my time. I have not included other expenses like building and IT overheads. I expect that the final cost per record at the end of the project will be slightly less than a pound per record as the major expenditure of salary for the data entry people and the 6 month posts are now accounted for. The final cost will depend on how long it takes me to finish checking and migrating the data.

 

I may be only half way through importing the 100,000 records, but I would like to think that this project can provide some valuable benchmark data for those planning future projects, suggest some ways of making the process quicker and help with forecasting costs and timeframes.

1

On Friday 28th September the Museum is holding a Science Uncovered Event where 350 of our scientists and visiting experts will gather in the Museum galleries and outdoors in a fabulous show of displays. It's a unique opportunity to come come and find out about the latest scientific research going on here at the Museum. We'll be there with a portable scanning electron microscope investigating our microfossil zoo!

 

Science_uncovered_2012.jpg

 

Micropalaeontologists Tom Hill, Steve Stukins and I will be part of the Imaging and Analysis table that will be situated under the globe in the Earth Galleries. We'll be looking at our newly established microfossil zoo under a portable scanning electron microscope from 16.00 until 22.00. Come and find out about the zoo and why its inhabitants are important.

 

Here are some taster images from the zoo that were taken by Tom and Steve last week. Science Uncovered 2012 is shaping up to be just as exciting as Science Uncovered 2011. Hope to see you there.

 

Science_uncovered_rads.jpg

0

Postdoctoral research visitor Ceran Sekeryapan from Turkey has been studying lacustrine ostracods from our collections over the past week with the intention of adding records to the database of Non-Marine Ostracod Distribution in Europe (NODE). This database, combined with details of modern climate records and Geographical Information System (GIS) software is increasingly being used to reconstruct past air temperatures.

 

 

Cypris pubera, a freshwater ostracod (courtesy of Dr David Horne).

 

  • Ostracods and temperature

 

It has long been known that some non-marine ostracod species prefer colder while others prefer warmer climates. The Mutual Ostracod Temperature Range (MOTR) method, developed by Dr David Horne at Queen Mary University of London, calibrates each species by calculating the range of air temperatures that they can tolerate. This is done by plotting the present geographical distribution of each species and using detailed modern records of climate in these locations to calculate a seasonal air temperature range.

 

Other factors affect the distribution of ostracods, for example the chemisty, depth and hydrology of different water bodies harbouring ostracods.

 

  • Reconstructing past climates

 

Many species present in the modern day are also present in the Quaternary fossil record covering the last 2.5 million years. The MOTR method plots air temperature ranges of each species present in a fossil assemblage so that a mutual temperature range can be derived.

 

Horne_etal_Woodston_b_colour_blog.jpg

 

Temperature ranges of non marine ostracod species identified by Horton et al. (1992) from a Hoxnian site about 400,000 years old at Woodston, Peterborough. The mutual temperature range for the month of January is calculated and shows slightly lower mean temperatures than the present day (courtesy of Dr David Horne).

 

Horne_etal_Woodston_a_colour_blog.jpg

 

The same species are plotted for July and show temperatures similar or slightly warmer than the present, a seasonal conclusion in general agreement with studies on plant macrofossils, pollen and molluscs (courtesy of Dr David Horne).

 

  • Developing our collections

 

Ceran has been identifying species part of a large microfossil collection donated in 1991 by Prof. John Neale of the University of Hull. As well as providing new identifications and ratifying previous interpretations, she will provide new latitude and longitude references for the sites that our material has come from using a method called georeferencing. Modern maps and available resources like Google Earth are used to provide up to date latitude and longitude readings that were not present in the original data.

 

OMEGAmap_Dave_Horne_blog.jpg

Coverage of Recent non marine ostracod records in the OMEGA database (courtesy of Dr David Horne).

 

  • The global picture

 

Key data from the NODE database and other large datasets from Canada, USA, southern Africa and Japan are being assembled in OMEGA (Ostracod Metadatabase of Environmental and Geographical Attributes). This will facilitate improved calibrations as well as biogeographical and biodiversity research. Details from large museum collections like ours are continually being used in this work.

 

  • The future

 

Testing and refinement of the MOTR method can only make this climate interpretation tool more accurate in the future. Ceran will be applying this method and gathering more data from sites in Turkey. Contributions to the OMEGA database are also invited as part of a citizen science project. Museum collections are also set to play a vital role in this study.

1

In 2011 we accepted a donation of 2,500 microscope slides containing over 90,000 ostracods from the personal collection of Prof. Richard Dingle. Richard has been visiting the Museum for almost 10 years now and has organised, documented and subsequently donated this major collection.

 

The material in the collection represents a lifetime of work on ostracods and underpins research that has helped illuminate some major questions in evolution, detailed the movements of ancient continents and shown patterns of migration of ostracods across oceans. Some important type specimens are also included in the collection.

 

P1000631_Dingle_Coll_blog.jpg

 

One of the slides that Richard has prepared before donation to the Museum. The total length is 7cm. Each of these specimens has been positioned on the slides during visits to the Museum by Richard; a very time consuming and painstaking process.

 

 

  • The opening of the Atlantic Ocean


From the late Jurassic (very roughly 150 million years ago) the ancient continental mass of Gondwana began to split, creating the Atlantic and Indian oceans. This left the Agulhus Bank off the tip of southern Africa in a central "cross roads" location between warm and cold waters, a situation that persists to the modern day.

 

 

Richard was able to show that mid Cretaceous South African ostracod faunas were similar to those of the Falklands, indicating the presence of an Agulhus Bank/Falkland Plateau prior to the plates separating and creating the present day Atlantic Ocean.

 

 

  • How and when do ostracod species migrate across oceans?

 


Studying the benthic (bottom dwelling) ostracods from the Agulhus Bank enabled Richard to document the influx of Madagascan type faunas from the emerging Indian Ocean and their onward passage to South America.

 

 

Various oceanic barriers to migration existed and were subsequently bridged. The ostracod faunas were able to show the timing of the influx of south/central Atlantic faunas into the SW Indian Ocean.

 

 

 

Richard's work has also contributed to various theories about the migration and sometimes isolation of ostracods lineages across oceans by island hopping. The collection also shows the migration of the important genus Magungaella from pre-glacial to younger glacial high latitude sites.

 

 

 

  • Can evolution work in reverse?

 

In a nutshell, Dollo's Law suggests that once an evolutionary trait has evolved, it can't be un-evolved. Richard's collection of ostracods from Marion Island in the Southern Ocean, shows the re-appearance of eyes in deep water ostracod genera that were previousy considered blind.

 

Richard proposed a gene-reactivation hypothesis to account for this. The possession of eyes is key to classifying ostracods and evaluating their evolutionary history, a matter of continuing controversy amongst ostracod workers.

 

Poseidonamicus_blog.jpg

 

 

 

An example of Poseidonamicus, one of the deep sea genera of blind ostracods used by Richard Dingle to show that sightedness returned later in geological time in shallow water forms. This example is from the Aberystwyth Collection and photographed by Gene Hunt now at the Smithsonian Institution, Washington.

 


 

  • What do ostracods tell us about ancient environments and oceans?


It has been suggested that 40 million years ago there was a major global deep sea event that caused a disruption in deep sea populations. Richard's findings derived from Ocean Drilling Programme/ Deep Sea Drilling Programme collection sites, have contributed to discussions and conclusions about this ancient event.

 

The collection now at the Museum also provides the source data for Richard's triangulation method of palaeo-environment prediction, based on late Cretaceous (roughly 70-85 million year old) ostracods.

 

Similarly, Richard proposed that ostracod provinces existed around the margins of the ancient continental mass of Gondwana. Examples of these assemblages are also present in the collections he donated to the Museum.

 

 

P1000648_Dingle_Coll_blog.jpg

 

 

The collection that Richard donated is vast in terms of numbers of specimens and represents a lifetime of work on ostracods. Hopefully it will be remembered not only for the large number of items present but also for the excellent science it backs up. More about Richard Dingle's Collection and his work can be found in a paper published this month in the Journal of Micropalaeontology.

3

The Museum radiolarian collection makes up considerably less than 1% of the total microfossil collection but is proving very popular at the moment. Last February we loaned some slides to accompany an exhibition by Irene Kopelman at the Gasworks Gallery and this week I processed a loan for Artist/PhD Researcher Gemma Anderson. Glass models of radiolarians made in 1889 by the father and son partnership of Leopold and Rudolf Blaschka are also being prepared for something special that will be happening later in the year at the Museum.

 

cgmx1001_blog.jpg

A scanning electron microscope image of part of the fossil radiolarian residue on loan to Gemma Anderson. The tip of a standard 0.65mm diameter dressmaking pin is included for scale.

 

Radiolarians are single celled organisms (Protozoa) that secrete tiny skeletons of opaline silica. They are present in the oceans of today from the tropics to the Arctic and live anywhere from near the surface to depths of several hundred metres. They range in size from 0.03mm to 2mm and mainly have a solitary floating lifestyle (planktonic), although some are colonial.

 

The living cell that produces the skeleton consists of a central mass of cytoplasm surrounded by a peripheral layer called the extracapsulum. Sometimes the extracapsulum contains bubble like structures that aid flotation and occasionally algal symbionts. The cells also produce radiating fine structures called axopodia. In some species these are contractile and may have been used to move organic particles closer to the extracapsulum for digestion.

 

Fine strands called fusules connect the extracapsulum with the inner capsule and these are unique to the Radiolaria. Modern radiolarians are subdivided based on the microanatomy of the central capsule whereas fossil forms are classified on skeletal characteristics. The living and fossil classification schemes are not intergrated as a result.

 

Dsc_0014_72.jpg

A Blaschka glass model of the radiolarian Aulosphaera elegantissima Haeckel, 1862. The central mass of cytoplasm, the axiopoda and the spherical silica shell are magnified about 500 times and reproduced in glass.

 

A collection of 18 radiolarian and heliozoan Blaschka glass models were acquired by the Museum in 1889. The Blaschkas made 10 different varieties of Radiolaria representing two of the three main subdivisions. They also offered three varieties of Heliozoa (literally sun animals). These look superficially like radiolarians but differ in the arrangement of the pseudo/axo-podia and the cellular structure in the central capsulum.

DSCF1190_blog.jpg

The illustration of A. elegantissima in Ernst Haeckel's 1862 monograph on the Radiolaria that provded the inspiration for their work.

 

Radiolarians are very beautiful to look at but are also scientifically significant. The have a long geological record stretching back more than 500 million years to the Cambrian Period. This makes them very useful for determining the age of sedimentary rocks that contain them as well as giving details of past climates and oceanographic conditions.

 

The Museum's radiolarian collection of 1,500 slides is small but historically very significant. Ernst Haeckel described 2,775 new radiolarian species in his 1887 monograph on the Challenger radiolarians [PDF] but did not define any type specimens. A set of teaching slides made by Haeckel in the Museum collection is the only set of plankton slides available from the Challenger Expedition. Residues in the Ocean Bottom Sediment Collection also contain important comparative specimens that help define Haeckel's species concepts in the absense of type specimens.

 

 

cgmx1002_blog2.jpg

A close up of part of the radiolarian residue on loan to Gemma Anderson. It is from Miocene Barbados Marl which is roughly 15 million years old.

 

It will be very interesting to see the results of Gemma's study; I will comment on this blog with any details. I would also be very excited to see a Blaschka radiolarian model on display in the Museum galleries. I promise a more detailed post on the Museum Blaschka Collection in the future with a very interesting story involving a team of archivists, curators, conservators and exhibition staff (with some C-T scanning too).

1 2 3 4 Previous Next

Giles Miller

Giles Miller

Member since: Apr 21, 2010

This is Giles Miller's Curator of Micropalaeontology blog. I make the Museum micropalaeontology collections available to visitors from all over the world, publish articles on the collections, give public talks and occasionally make collections myself.

View Giles Miller's profile