Skip navigation

Curator of Micropalaeontology's blog

3 Posts tagged with the the_micropalaeontological_society tag
4

The answer is in the world’s first foraminiferal sculpture park in Zhongshan City, China. Remarkable Chinese scientist Zheng Shouyi has gained international recognition for her work on the Foraminifera of China and was responsible for encouraging the building of this sculpture park.

 

Just before Christmas, a book chapter written by myself and entitled 'A brief History of modelling of the foraminifera from d'Orbigny to Zheng Shouyi' was published in a Special Publication of the Micropalaeontological Society on 'Landmarks in Foraminiferal Micropalaeontology, History and Development'. This post highlights the remarkable work of Zheng Shouyi who has shown publically what is hidden behind the scenes of many research establishments like the Museum and touches briefly on some of the microfossil model collections we have here at the Museum.

 

sculpture_Pseudononion_auriculum_H-AandE_blog.jpg

Zheng Shouyi writes 'Foraminifera are shelled marine protozoa about 1 mm in size, with a geological history of five hundred million years. There are 40,000 known fossil species ranging from Cambrian to Quaternary and some 6000 species living in the world oceans. In allusion to the role they play as excellent bioindicators of past and present marine environments used in many scientific disciplines, the foraminifera have been dubbed tiny giants of the great seas by Wayne Brock (1977).'

 

The sculptures are magnified between 750 and almost 9,000 times, with some based on species for which we hold the holotype specimens. The example above shows Pseudononion auriculum (Heron-Allen and Earland, 1930) while other sculptures represent species described by Brady from our Challenger Collection.

 

ZhongshanForamPark 005_blog.jpg

 

Zheng Shouyi in front of some foraminiferal sculptures at the Sanxian Foraminiferal Sculpture Park, Zhongshan City, Guangdong Province, China (photo courtesy of Bilal Haq)

 

114 large stone sculptures of Palaeozoic to modern foraminifera have been sculpted from marble, granite and sandstone over 5 years under the guidance of Zheng Shouyi. 32 locations and establishments in China, Austria, India, South Korea and the Philippines, have copies of Zheng Shouyi’s models and sculptures.

 

The idea for a sculpture park was first suggested by Bilal Haq of the National Science Foundation in USA when he saw Zheng Shouyi’s models in her office in the Institute of Oceanology in Qingdao, China. Zheng used her local political influence to persuade authorities in her home town of Zhongshan to create “Sanxiang Foraminiferal Sculpture Park” that opened in 2009. The Smithsonian Magazine has listed the park as one of its top 10 Evotourism sites.

 

 

forampark3_blog.jpgSanxian Foraminiferal Sculpture Park, Zhongshan City, Guangdong Province, China  (photo courtesy of Bilal Haq)

 

Zheng Shouyi was born in the Philippines to Chinese parents in 1931 and moved to China following her university education. She discovered foraminifera during her graduate studies and reports 'love at first sight of the beautifully diverse tests of Foraminifera'.  She was assigned to work on the taxonomy and ecology of Recent Foraminifera of the Chinese seas, using some 1700 water and sediment samples collected from 1958-1960 by the National Comprehensive Oceanographic Investigation from sampling sites ranging from the cold temperate northernmost Bohai Sea to the South China Sea.

 

She was presented the 2003 Joseph A. Cushman Award for outstanding contributions to foraminiferal studies in recognition of a career that established her as the foremost Chinese Foraminiferal micropalaeontologist. In 2009 she was the only woman to be honoured as one of the top ten outstanding returned overseas Chinese.

 

model_Pseudononion_auriculum_H-AandE_blog.jpgModel_stand_blog.jpg

Palm sized foraminiferal models made by Zheng Shouyi including Pseudononion auriculum (Heron-Allen and Earland, 1930) above. We are looking to acquire a set of these for our collections (photo courtesy of Zheng Shouyi)

 

Inspired by the famous French pioneer of foraminiferal studies Alcide d’Orbigny (1802-1857) and the models he used to illustrate his work, Zheng has also created plastic palm-sized models of 250 species of foraminifera belonging to 192 genera. Zheng Shouyi's models would look amazing in our public galleries and showcase some of the Museum science and collections not normally reflected by the displays at the Museum.

 

P1030152_blog.jpg

 

Some of the models of foraminifera from our collections made by d'Orbigny in 1826. Yellower models are based on living species while fossil species are modelled in white plaster of paris.

 

I am currently in negotiation with Zheng Shouyi about acquiring a 120 piece set of Zheng Shouyi's models to complement the microfossil models, like those of d'Orbigny that we have in our collections, support ongoing research into modelling foraminifera and to go on display to illustrate Museum science and collections.

 

TMS006_cover_front.jpg

 

The front cover of 'Landmarks in Foraminiferal Micropalaeontology' features some microfossils from our collection and the final chapter illustrates many of the microfossil model sets we have behind the scenes.

 

If you would like to find out more about Zheng Shouyi, Alcide d’Orbigny or Heron-Allen, arguably the man responsible for the nucleus of the Museum’s amazing micropalaeontological collections, then the book entitled 'Landmarks in Foraminiferal Micropalaeontology, History and Development' is now available.

0

On the 18th and 19th of November we welcomed over 150 micropalaeontologists who travelled from as far away as New Zealand for a conference at the Museum. Over 50 of them were given tours behind the scenes and 45 micropalaeontology posters were displayed. Thank you to fellow conference hosts and Museum scientists Tom Hill and Steve Stukins who have written this guest blog to describe the significance of these two busy days/weeks/months for micropalaeontology at the Museum:

 

IMG_2733_blog.jpg

The stage set for the start of the micropalaeontology conference at the Museum

 

On Monday 18th and Tuesday 19th November 2013, the Micropalaeontology Unit hosted a conference at the Museum on behalf of The Micropalaeontological Society under the theme Micropalaeontology and the IODP: Past, Present and Future Applications. IODP stands for the International Ocean Drilling Programme and is an international marine research collaboration that explores Earth's history using ocean-going research platforms, for example the JOIDES Resolution research vessel. These platforms drill cores through the seafloor to recover the layers of sediment and rock that have accumulated at the bottom of the oceans.

 

The conference was a resounding success, with 150 delegates registering and contributing. We even had to close registration a couple of weeks beforehand as we reached capacity. The event included a number of keynote speakers who specialise in research on IOPD samples, numerous presentations and posters covering all aspects of micropalaeontology and tours behind the scenes.

IMG_0717_blog.jpg

Conference delegates enjoying the poster session

 

Micropalaeontology is an integral part of IODP studies and as a result micropalaeontologists will be found on all IODP cruises. As the amount of sediment or rock extracted by coring is often relatively small, microfossils provide an ideal route through which scientists can:

  • study the age of the sediment under investigation
  • reveal the climatic conditions that prevailed at the time of sediment deposition

This is because hundreds, thousands, indeed millions of microfossils may be preserved in a layer of sediment only a few millimetres thick. As a result, micropalaeontology is at the forefront of IODP and climate change research.

 

IMG_2723_blog.jpg

Keynote speaker Prof Bridget Wade from University College London

 

The international relevance and importance of micropalaeontology in ocean research was underlined by the fact that we hosted delegates from across the world including America, Canada, France, Germany, the Netherlands, New Zealand, Switzerland and Tunisia, to name a few. The diversity in delegates was complemented by the similar diversity in micropalaeontology projects that were discussed through both oral and poster presentations.

 

One of the research topics often discussed was how micropalaeontologists can extract detailed geochemical signals from microfossils to quantify past oceanic and climatic conditions. If such high resolution analysis is applied to an ocean core, it is then possible to reconstruct how oceanic conditions (which in turn reflect climate) have changed over millions of years. Such studies are essential if scientists are to understand how our Earth responds to climate change (whether it be due to natural or human-induced change).

 

IMG_0774_blog.jpgSteve Stukins demonstrating the John Williams Index of Palaeopalynology to a group of M.Sc. students studying Applied and Petroleum Micropalaeontology at the University of Birmingham

 

The conference also provided a unique opportunity to publicise the quality and quantity of the micropalaeontology collections housed at the Museum to a large specialist audience. Steve and Giles provided tours through the collections to over 50 micropalaeontologists including the new intake of MSc students studying micropalaeontology at Birmingham University.

 

Numerous new projects to work on our collections and potential new collaborations have resulted from these tours and from discussions we have had during the conference. From the feedback that we received, it seems that members of the Micropalaeontological Society also found the conference a great success. If you are interested to learn more details, the abstract volume for the TMS2013 talks is now available on-line.

 

The conference would not have been such a great success had it not been for the generosity of our sponsors. We would therefore like to thank The Micropalaeontological Society, The UK-IODP, The Geological Society, AASP – The Palynological Society, Neftex, Olympus, Petrostrat and Beta Analytic for their kind support during this event.

0

What is micropalaeontology?

Posted by Giles Miller Jun 21, 2011

The answer to this question is the straightforward part of this post: palaeontology is the study of fossils and micropalaeontolgy is the study of microfossils. Alas, that’s the easy bit done… what then, are microfossils?

 

I’ll assume that we all know what a fossil is (if not, I recommend starting here) so a microfossil must be a small fossil, right? Actually, this is a harder question to answer than you might think so here are some thoughts on how large a microfossil is, how old they are and how we manage them at the Museum.


Size

There is no agreed size below which a fossil stops being a large fossil and starts becoming a microfossil. Some people arbitrarily say that if you need to use a microscope to view a fossil then you are looking at a microfossil. However, some fossils we consider microfossils measure more than a couple of centimetres in diameter. The rocks that were used to construct the pyramids in Egypt contain microfossils that can be as large as a ten pence piece!


Untitled-2.jpg

Photo of Egyptian pyramid courtesy of Bobbie Molloy.


This size delimiting definition also gets slightly difficult to use when you are studying the microscopic parts of a larger organism, for example the fossilised scales of a fish or a minute example of something that is usually larger like a gastropod (e.g. a snail). Most people studying these topics would consider themselves microvertebrate workers or gastropod workers and not micropalaeontologists. However, many micropalaeontologists, like me also study microscopic remains of larger organisms like fish that they find during laboratory preparations for other microscopic remains.


Biological classification

Some people try to restrict micropalaeontology to particular biological groups that are commonly considered microfossils. This can also be open to personal opinion, for example, palynologists study microscopic organic remains like spores, pollen and oceanic plankton – all microscopic in size – but some of them would consider themselves palynologists rather than micropalaeontologists. The Micropalaeontological Society defines its specialist groups to reflect biological classifications of organisms commonly accepted as microfossil groups.


Age

As with size, there is no agreed age beyond which something stops being recently dead and becomes a fossil. With specimens in this narrow window of age (ie 0-10,000 years old) it is virtually impossible to tell how old a microfossil specimen is without carrying out some sort of destructive chemical analysis on it.


Our collections

At the Museum, we mainly follow the Micropalaeontological Society's definition of a microfossil and in the Palaeontology Department we have collections of Foraminifera, Ostracoda, conodonts, Radiolaria, nannofossils and various palynological groups such as the dinoflagellates and spores. In future posts I will introduce each of these microfossil groups as I highlight projects that are currently happening here at the Museum.


My job is to manage all of these collections which number over 750,000 objects. It would be impossible to count the exact number of specimens because some slides and residues contain hundreds of thousands of specimens.


The lack of clarity over what age makes a microfossil causes problems sometimes with deciding where to store specimens in the Museum collections. In the Palaeontology Department we have all the extant (modern) Foraminifera as well as the fossil specimens, so no problem there. However, ostracods are split between our department and the Zoology Department, with us holding the fossils and Zoology the recent (extant) forms. In practise it is very difficult to draw the line between fossil and recent and we certainly have some ostracods that could be in the Zoology Department and probably vice versa.


The majority of the microfossil collections are Foraminifera, which are unicellular animals with a foramen (i.e. an opening, sometimes multiple) that form small shells of calcium carbonate, silica or organic materials. Examples of Foraminifera are shown below, where the field of view of the slide from the Heron-Allen Collection is about 2cm.


1922_card_detail2.jpg

The Heron-Allen Collection

 

I mentioned that some micropalaeontologists like me also work on microscopic fragments of fish (microvertebrates). At the Museum these are kept with the fish collections so they do not come under my ‘jurisdiction’. However, I still study them and some of my most important discoveries have been on this subject as you will find out in the next post to the blog.



Giles Miller

Giles Miller

Member since: Apr 21, 2010

This is Giles Miller's Curator of Micropalaeontology blog. I make the Museum micropalaeontology collections available to visitors from all over the world, publish articles on the collections, give public talks and occasionally make collections myself.

View Giles Miller's profile