Skip navigation

The NaturePlus Forums will be offline from mid August 2018. The content has been saved and it will always be possible to see and refer to archived posts, but not to post new items. This decision has been made in light of technical problems with the forum, which cannot be fixed or upgraded.

We'd like to take this opportunity to thank everyone who has contributed to the very great success of the forums and to the community spirit there. We plan to create new community features and services in the future so please watch this space for developments in this area. In the meantime if you have any questions then please email:

Fossil enquiries: esid@nhm.ac.uk
Life Sciences & Mineralogy enquiries: bug@nhm.ac.uk
Commercial enquiries: ias1@nhm.ac.uk

Exploring cyanobacterial diversity in Antarctica Blog

3 Posts tagged with the valley tag
0

This year, we went back to Lake Joyce to study the benthic biology in the McMurdo Dry Valleys. The 3D microbial structures that are growing out of the mat are particularly interesting because most of them have a calcite skeleton. This is the only lake in the Dry Valleys where microbial mats have such distinctive calcite skeletons.

 

The calcite skeleton makes these microbialites particularly interesting for geobiology, where modern microbial mats are studied to enable a better interpretation of microbialite fossils from early Earth. 

 

Over the last three weeks we collected samples that will allow us to investigate if the water chemistry, light and sedimentation effect the growth of microbialites in the lake. We also collected mat material to carry out DNA and microscopy analysis to evaluate the role that cyanobacteria, other bacteria and eukaryotes play on the formation of microbialites and their calcite skeleton.

 

cyano.jpg

Microscopy image of Phormidium cyanobacterial filaments in Lake Joyce mats. Most of the Phormidium filaments have a strong purple pigmentation though the production of Phycoerythrin for a better utilisation of the limited light that is available in Lake Joyce.

 

blog4_small.jpg

Anne working at the microscope.

 

Untitled-1.jpg

Close-up image of microbialites with calcite skeleton covered by thin microbial mat webs .

 

blog3.jpg

Microbialite structures with calcite skeleton collected from Lake Joyce by diving.

 

blog7.jpg

The team getting ready for a dive to collect microbial mats.

 

The main efforts of the field event led by researchers from UC Davis, California, were to map the distribution of the microbial structures in the lake and to test what the influence of sedimentation is on the microbial structures.

 

The imaging is done by a drop camera that is held on a rope through a hole in the ice. The team installed several traps in the ice that will collect sediment from now until next season.Each hole is individually drilled with a jiffy drill in order to insert the traps and document the microbial mas and microbial structures.

 

blog2.jpg

The team drilling a hole in the ice.

0

The ice mass on Antarctica is the largest body of frozen water in the world so it is unsurprising that our drinking water is melted glacier ice. Our camp is near Canada Glacier and for several days some of us go over to Canada Glacier to collect chunks of ice that have fallen off the glacier. These chunks of ice are called glacier berries by the locals.

 

Trip to Canada Glacier to collect glacier berries

glacier1.jpg

 

Standing among the glacier berries

glacier.jpg

1

Most of the cyanobacterial mats that we have found were orange pigmented and the macroscopic structure was flaky to cohesive. The orange colour is due to carotenoids which are an protection against UV and oxidative stress.

 

I had a small light micrscope with me in the field and the genus Leptolyngbya dominated the orange mats. Leptolyngbya are filamentous non-branching cyanobacteria belonging to the order Oscillatoriales. They are mostly between 0.5-3 micrometre thick. However, the lower side of the orange layers sometimes had green pigmentation, which besides the Leptolyngbya also had some Phormidium. The genus Phormidium also belong to the order Oscillatoriales, but they are thicker with a width of around 5 micrometres.

 

   Flaky orange-pigmented cyanobacterial mats dominated by Leptolyngbya

Cyano1.jpg

 

Cohesive orange-pigmented cyanobacterial mats

Cyano2.jpg

 

green lower side of cyanobacterial mat with Phormidium

Cyano3.jpg

Interestingly, we also found some cyanobacterial mats which were dark purple to black. This colour is due to the UV-screening Scytonemin. We found the genus Schizothrix sp. (Oscillatoriales)  in the mats which is known to produce Scytonemin. We also found several ponds with large accumulations of the genus Nostoc, which belongs to the order Nostocales and has specialist cells called heterocysts for nitrogen-fixation.

 

Cyanobacterial mats with the Scytonemin-producing genus Schizothrix

Cyano5.jpg

 

Nostoc accumulations in a meltwater pond

Cyano4.jpg

 

We also found a few ponds with green algae. Green algae biofilms are easy to distinguish from cyanobacteria as green algae are very bright green.

                                                                                              

Green algae

Algae1.jpg



Anne D Jungblut

Anne D Jungblut

Member since: Sep 2, 2010

I'm Anne Jungblut from the Botany Department. Join me as I head to Antarctica to study cyanobacterial diversity in ice-covered lakes of the Dry Valleys and Ross Island where already scientists on Scott's and Shakleton's expeditions made many discoveries.

View Anne D Jungblut's profile